{"title":"利用人体脂肪间充质干细胞(hADMSCs)和 PCL/层粘连蛋白支架基底合成骨生物相容性植入物。","authors":"Donya Zeydari, Ehsan Karimi, Ehsan Saburi","doi":"10.22038/IJBMS.2023.71307.15491","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Bone tissue engineering is considered a new method in the treatment of bone defects and can be an effective alternative to surgery and bone grafting. The use of adipose tissue mesenchymal stem cells (ADMSCs) on synthetic polymer scaffolds is one of the new approaches in bone tissue engineering. In this study, we aimed to investigate the effect of laminin coating on biocompatibility and osteogenic differentiation of ADMSCs seeded on polycaprolactone (PCL) scaffolds.</p><p><strong>Materials and methods: </strong>The morphology of the electrospun scaffold was evaluated using a scanning electron microscope (SEM). Cell proliferation and cytotoxicity were determined by MTT assay. The adipogenic and osteogenic differentiation potential of the cells was evaluated. The osteogenic differentiation of ADMSCs cultured on the PCL scaffold coated with laminin was assessed by evaluating the level of alkaline phosphatase (ALP) activity, intracellular calcium content, and expression of bone-specific genes.</p><p><strong>Results: </strong>The results showed that the ADMSCs cultured on PCL/laminin showed enhanced osteogenic differentiation compared to those cultured on non-coated PCL or control medium (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>It seems that laminin enhances the physicochemical properties and biocompatibility of PCL nanofiber scaffolds; and by modifying the surface of the scaffold, improves the differentiation of ADMSCs into osteogenic cells.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 2","pages":"118-194"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis of bone biocompatible implants using human adipose-derived mesenchymal stem cells (hADMSCs) and PCL/laminin scaffold substrate.\",\"authors\":\"Donya Zeydari, Ehsan Karimi, Ehsan Saburi\",\"doi\":\"10.22038/IJBMS.2023.71307.15491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Bone tissue engineering is considered a new method in the treatment of bone defects and can be an effective alternative to surgery and bone grafting. The use of adipose tissue mesenchymal stem cells (ADMSCs) on synthetic polymer scaffolds is one of the new approaches in bone tissue engineering. In this study, we aimed to investigate the effect of laminin coating on biocompatibility and osteogenic differentiation of ADMSCs seeded on polycaprolactone (PCL) scaffolds.</p><p><strong>Materials and methods: </strong>The morphology of the electrospun scaffold was evaluated using a scanning electron microscope (SEM). Cell proliferation and cytotoxicity were determined by MTT assay. The adipogenic and osteogenic differentiation potential of the cells was evaluated. The osteogenic differentiation of ADMSCs cultured on the PCL scaffold coated with laminin was assessed by evaluating the level of alkaline phosphatase (ALP) activity, intracellular calcium content, and expression of bone-specific genes.</p><p><strong>Results: </strong>The results showed that the ADMSCs cultured on PCL/laminin showed enhanced osteogenic differentiation compared to those cultured on non-coated PCL or control medium (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>It seems that laminin enhances the physicochemical properties and biocompatibility of PCL nanofiber scaffolds; and by modifying the surface of the scaffold, improves the differentiation of ADMSCs into osteogenic cells.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":\"27 2\",\"pages\":\"118-194\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2023.71307.15491\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2023.71307.15491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Synthesis of bone biocompatible implants using human adipose-derived mesenchymal stem cells (hADMSCs) and PCL/laminin scaffold substrate.
Objectives: Bone tissue engineering is considered a new method in the treatment of bone defects and can be an effective alternative to surgery and bone grafting. The use of adipose tissue mesenchymal stem cells (ADMSCs) on synthetic polymer scaffolds is one of the new approaches in bone tissue engineering. In this study, we aimed to investigate the effect of laminin coating on biocompatibility and osteogenic differentiation of ADMSCs seeded on polycaprolactone (PCL) scaffolds.
Materials and methods: The morphology of the electrospun scaffold was evaluated using a scanning electron microscope (SEM). Cell proliferation and cytotoxicity were determined by MTT assay. The adipogenic and osteogenic differentiation potential of the cells was evaluated. The osteogenic differentiation of ADMSCs cultured on the PCL scaffold coated with laminin was assessed by evaluating the level of alkaline phosphatase (ALP) activity, intracellular calcium content, and expression of bone-specific genes.
Results: The results showed that the ADMSCs cultured on PCL/laminin showed enhanced osteogenic differentiation compared to those cultured on non-coated PCL or control medium (P<0.05).
Conclusion: It seems that laminin enhances the physicochemical properties and biocompatibility of PCL nanofiber scaffolds; and by modifying the surface of the scaffold, improves the differentiation of ADMSCs into osteogenic cells.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.