Qi Wang , Xudong Wang , Wei Wang , Yongjie Cui , Yuling Song
{"title":"基于电动拖拉机电机温度补偿的耕作阻力自适应运行控制方法","authors":"Qi Wang , Xudong Wang , Wei Wang , Yongjie Cui , Yuling Song","doi":"10.1016/j.jterra.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional plowing efficiency control methods are difficult to balance the tillage efficiency and uniform plowing depth, and the impact of the motor temperature rise on the control accuracy cannot be ignored during electric tractor operations. Therefore, a plowing drag-adaptive operation control method considering the motor temperature rise was proposed for an electric tractor equipped with a sliding battery pack. Firstly, a field-oriented control model with temperature compensation for the PMSM was developed based on the obtained winding resistances and flux links at different temperatures. Then, the driving torque and battery displacement were regulated to adapt the drag variation by the fuzzy neural network algorithm, allowing joint control of the speed and slip rate, and the simulation analysis was performed. Finally, a field plowing test was conducted. The results showed that the traction efficiency is increased by 23.33 % compared with those without control, and when the motor temperature rises, it can be compensated for temperature to output the required torque accurately, and the average relative errors in both speed and slip rate are reduced. The proposed method can improve the slip and greatly enhance the plowing operational stability, which provided technical support for the automatic precision operation of electric tractors.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plowing drag-adaptive operation control method based on motor temperature compensation for electric tractor\",\"authors\":\"Qi Wang , Xudong Wang , Wei Wang , Yongjie Cui , Yuling Song\",\"doi\":\"10.1016/j.jterra.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional plowing efficiency control methods are difficult to balance the tillage efficiency and uniform plowing depth, and the impact of the motor temperature rise on the control accuracy cannot be ignored during electric tractor operations. Therefore, a plowing drag-adaptive operation control method considering the motor temperature rise was proposed for an electric tractor equipped with a sliding battery pack. Firstly, a field-oriented control model with temperature compensation for the PMSM was developed based on the obtained winding resistances and flux links at different temperatures. Then, the driving torque and battery displacement were regulated to adapt the drag variation by the fuzzy neural network algorithm, allowing joint control of the speed and slip rate, and the simulation analysis was performed. Finally, a field plowing test was conducted. The results showed that the traction efficiency is increased by 23.33 % compared with those without control, and when the motor temperature rises, it can be compensated for temperature to output the required torque accurately, and the average relative errors in both speed and slip rate are reduced. The proposed method can improve the slip and greatly enhance the plowing operational stability, which provided technical support for the automatic precision operation of electric tractors.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000028\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Plowing drag-adaptive operation control method based on motor temperature compensation for electric tractor
Traditional plowing efficiency control methods are difficult to balance the tillage efficiency and uniform plowing depth, and the impact of the motor temperature rise on the control accuracy cannot be ignored during electric tractor operations. Therefore, a plowing drag-adaptive operation control method considering the motor temperature rise was proposed for an electric tractor equipped with a sliding battery pack. Firstly, a field-oriented control model with temperature compensation for the PMSM was developed based on the obtained winding resistances and flux links at different temperatures. Then, the driving torque and battery displacement were regulated to adapt the drag variation by the fuzzy neural network algorithm, allowing joint control of the speed and slip rate, and the simulation analysis was performed. Finally, a field plowing test was conducted. The results showed that the traction efficiency is increased by 23.33 % compared with those without control, and when the motor temperature rises, it can be compensated for temperature to output the required torque accurately, and the average relative errors in both speed and slip rate are reduced. The proposed method can improve the slip and greatly enhance the plowing operational stability, which provided technical support for the automatic precision operation of electric tractors.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.