基于模型的安全评估的正式管理规范方法

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2023-12-01 DOI:10.23919/JSEE.2023.000154
Changyi Xu;Yiman Duan;Chao Zhang
{"title":"基于模型的安全评估的正式管理规范方法","authors":"Changyi Xu;Yiman Duan;Chao Zhang","doi":"10.23919/JSEE.2023.000154","DOIUrl":null,"url":null,"abstract":"In the field of model-based system assessment, mathematical models are used to interpret the system behaviors. However, the industrial systems in this intelligent era will be more manageable. Various management operations will be dynamically set, and the system will be no longer static as it is initially designed. Thus, the static model generated by the traditional model-based safety assessment (MBSA) approach cannot be used to accurately assess the dependability. There mainly exists three problems. Complex: huge and complex behaviors make the modeling to be trivial manual; Dynamic: though there are thousands of states and transitions, the previous model must be resubmitted to assess whenever new management arrives; Unreusable: as for different systems, the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same. Motivated by solving the above problems, this research studies a formal management specifying approach with the advantages of agility modeling, dynamic modeling, and specification design that can be re-suable. Finally, three typical managements are specified in a series-parallel system as a demonstration to show the potential.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 6","pages":"1589-1601"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403827","citationCount":"0","resultStr":"{\"title\":\"Formal Management-Specifying Approach for Model-Based Safety Assessment\",\"authors\":\"Changyi Xu;Yiman Duan;Chao Zhang\",\"doi\":\"10.23919/JSEE.2023.000154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of model-based system assessment, mathematical models are used to interpret the system behaviors. However, the industrial systems in this intelligent era will be more manageable. Various management operations will be dynamically set, and the system will be no longer static as it is initially designed. Thus, the static model generated by the traditional model-based safety assessment (MBSA) approach cannot be used to accurately assess the dependability. There mainly exists three problems. Complex: huge and complex behaviors make the modeling to be trivial manual; Dynamic: though there are thousands of states and transitions, the previous model must be resubmitted to assess whenever new management arrives; Unreusable: as for different systems, the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same. Motivated by solving the above problems, this research studies a formal management specifying approach with the advantages of agility modeling, dynamic modeling, and specification design that can be re-suable. Finally, three typical managements are specified in a series-parallel system as a demonstration to show the potential.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"34 6\",\"pages\":\"1589-1601\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10403827/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10403827/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在基于模型的系统评估领域,数学模型被用来解释系统行为。然而,智能时代的工业系统将更具可管理性。各种管理操作将动态设置,系统将不再是最初设计时的静态系统。因此,传统的基于模型的安全评估(MBSA)方法生成的静态模型无法用于准确评估可靠性。主要存在以下三个问题。复杂:庞大而复杂的行为使得建模成为琐碎的手工工作;动态:虽然有成千上万的状态和转换,但每当有新的管理出现时,就必须重新提交以前的模型进行评估;不可重用:对于不同的系统,虽然管理是相同的,但必须同时重新考虑管理和系统本身,重新提交模型。为了解决上述问题,本研究研究了一种具有敏捷建模、动态建模和可重复使用的规范设计等优点的正式管理指定方法。最后,在一个串并联系统中指定了三种典型的管理方法,以展示其潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal Management-Specifying Approach for Model-Based Safety Assessment
In the field of model-based system assessment, mathematical models are used to interpret the system behaviors. However, the industrial systems in this intelligent era will be more manageable. Various management operations will be dynamically set, and the system will be no longer static as it is initially designed. Thus, the static model generated by the traditional model-based safety assessment (MBSA) approach cannot be used to accurately assess the dependability. There mainly exists three problems. Complex: huge and complex behaviors make the modeling to be trivial manual; Dynamic: though there are thousands of states and transitions, the previous model must be resubmitted to assess whenever new management arrives; Unreusable: as for different systems, the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same. Motivated by solving the above problems, this research studies a formal management specifying approach with the advantages of agility modeling, dynamic modeling, and specification design that can be re-suable. Finally, three typical managements are specified in a series-parallel system as a demonstration to show the potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1