{"title":"多架无人机空对空作战战术决策的多标准博弈方法","authors":"Ruhao Jiang;He Luo;Yingying Ma;Guoqiang Wang","doi":"10.23919/JSEE.2023.000115","DOIUrl":null,"url":null,"abstract":"Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 6","pages":"1447-1464"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403834","citationCount":"0","resultStr":"{\"title\":\"Multicriteria Game Approach to Air-to-Air Combat Tactical Decisions for Multiple UAVs\",\"authors\":\"Ruhao Jiang;He Luo;Yingying Ma;Guoqiang Wang\",\"doi\":\"10.23919/JSEE.2023.000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"34 6\",\"pages\":\"1447-1464\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10403834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10403834/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10403834/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multicriteria Game Approach to Air-to-Air Combat Tactical Decisions for Multiple UAVs
Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.