{"title":"Tribbles-homolog 1 在肝脏、脂肪细胞和动脉粥样硬化中的新功能。","authors":"Ileana Hernandez-Resendiz, Ralph Burkhardt","doi":"10.1097/MOL.0000000000000917","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis.</p><p><strong>Recent findings: </strong>Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to β3-adrenergic receptor activation.</p><p><strong>Summary: </strong>Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"51-57"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel functions of Tribbles-homolog 1 in liver, adipocytes and atherosclerosis.\",\"authors\":\"Ileana Hernandez-Resendiz, Ralph Burkhardt\",\"doi\":\"10.1097/MOL.0000000000000917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis.</p><p><strong>Recent findings: </strong>Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to β3-adrenergic receptor activation.</p><p><strong>Summary: </strong>Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .</p>\",\"PeriodicalId\":11109,\"journal\":{\"name\":\"Current opinion in lipidology\",\"volume\":\" \",\"pages\":\"51-57\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in lipidology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOL.0000000000000917\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000917","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel functions of Tribbles-homolog 1 in liver, adipocytes and atherosclerosis.
Purpose of review: Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis.
Recent findings: Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to β3-adrenergic receptor activation.
Summary: Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.