Andrew Tyler, Li Huang, Karl Kunze, Radhouene Neji, Ronald Mooiweer, Charlotte Rogers, Pier Giorgio Masci, Sébastien Roujol
{"title":"心肌左心室定量易感性绘图的特征。","authors":"Andrew Tyler, Li Huang, Karl Kunze, Radhouene Neji, Ronald Mooiweer, Charlotte Rogers, Pier Giorgio Masci, Sébastien Roujol","doi":"10.1016/j.jocmr.2024.101000","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial quantitative susceptibility mapping (QSM) may offer better specificity to iron than conventional T<sub>2</sub>* imaging in the assessment of cardiac diseases, including intra-myocardial hemorrhage. However, the precision and repeatability of cardiac QSM have not yet been characterized. The aim of this study is to characterize these key metrics in a healthy volunteer cohort and show the feasibility of the method in patients.</p><p><strong>Methods: </strong>Free breathing respiratory-navigated multi-echo 3D gradient echo images were acquired, from which QSM maps were reconstructed using the Morphology Enhanced Dipole Inversion toolbox. This technique was first evaluated in a susceptibility phantom containing tubes with known concentrations of gadolinium. In vivo characterization of myocardial QSM was then performed in a cohort of 10 healthy volunteers where each subject was scanned twice. Mean segment susceptibility, precision (standard deviation of voxel magnetic susceptibilities within one segment), and repeatability (absolute difference in segment mean susceptibility between repeats) of QSM were calculated for each American Heart Association (AHA) myocardial segment. Finally, the feasibility of the method was shown in 10 patients, including four with hemorrhagic infarcts.</p><p><strong>Results: </strong>The phantom experiment showed a strong linear relationship between measured and predicted susceptibility shifts (R<sup>2</sup> > 0.99). For the healthy volunteer cohort, AHA segment analysis showed the mean segment susceptibility was 0.00 ± 0.02 ppm, the mean precision was 0.05 ± 0.04 ppm, and the mean repeatability was 0.02 ± 0.02 ppm. Cardiac QSM was successfully performed in all patients. Focal iron deposits were successfully visualized in the patients with hemorrhagic myocardial infarctions.</p><p><strong>Conclusion: </strong>The precision and repeatability of cardiac QSM were successfully characterized in phantom and in vivo experiments. The feasibility of the technique was also successfully demonstrated in patients. While challenges still remain, further clinical evaluation of the technique is now warranted.</p><p><strong>Trial registration: </strong>This work does not report on a health care intervention.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101000"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of quantitative susceptibility mapping in the left ventricular myocardium.\",\"authors\":\"Andrew Tyler, Li Huang, Karl Kunze, Radhouene Neji, Ronald Mooiweer, Charlotte Rogers, Pier Giorgio Masci, Sébastien Roujol\",\"doi\":\"10.1016/j.jocmr.2024.101000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myocardial quantitative susceptibility mapping (QSM) may offer better specificity to iron than conventional T<sub>2</sub>* imaging in the assessment of cardiac diseases, including intra-myocardial hemorrhage. However, the precision and repeatability of cardiac QSM have not yet been characterized. The aim of this study is to characterize these key metrics in a healthy volunteer cohort and show the feasibility of the method in patients.</p><p><strong>Methods: </strong>Free breathing respiratory-navigated multi-echo 3D gradient echo images were acquired, from which QSM maps were reconstructed using the Morphology Enhanced Dipole Inversion toolbox. This technique was first evaluated in a susceptibility phantom containing tubes with known concentrations of gadolinium. In vivo characterization of myocardial QSM was then performed in a cohort of 10 healthy volunteers where each subject was scanned twice. Mean segment susceptibility, precision (standard deviation of voxel magnetic susceptibilities within one segment), and repeatability (absolute difference in segment mean susceptibility between repeats) of QSM were calculated for each American Heart Association (AHA) myocardial segment. Finally, the feasibility of the method was shown in 10 patients, including four with hemorrhagic infarcts.</p><p><strong>Results: </strong>The phantom experiment showed a strong linear relationship between measured and predicted susceptibility shifts (R<sup>2</sup> > 0.99). For the healthy volunteer cohort, AHA segment analysis showed the mean segment susceptibility was 0.00 ± 0.02 ppm, the mean precision was 0.05 ± 0.04 ppm, and the mean repeatability was 0.02 ± 0.02 ppm. Cardiac QSM was successfully performed in all patients. Focal iron deposits were successfully visualized in the patients with hemorrhagic myocardial infarctions.</p><p><strong>Conclusion: </strong>The precision and repeatability of cardiac QSM were successfully characterized in phantom and in vivo experiments. The feasibility of the technique was also successfully demonstrated in patients. While challenges still remain, further clinical evaluation of the technique is now warranted.</p><p><strong>Trial registration: </strong>This work does not report on a health care intervention.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101000\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101000\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101000","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Characterization of quantitative susceptibility mapping in the left ventricular myocardium.
Background: Myocardial quantitative susceptibility mapping (QSM) may offer better specificity to iron than conventional T2* imaging in the assessment of cardiac diseases, including intra-myocardial hemorrhage. However, the precision and repeatability of cardiac QSM have not yet been characterized. The aim of this study is to characterize these key metrics in a healthy volunteer cohort and show the feasibility of the method in patients.
Methods: Free breathing respiratory-navigated multi-echo 3D gradient echo images were acquired, from which QSM maps were reconstructed using the Morphology Enhanced Dipole Inversion toolbox. This technique was first evaluated in a susceptibility phantom containing tubes with known concentrations of gadolinium. In vivo characterization of myocardial QSM was then performed in a cohort of 10 healthy volunteers where each subject was scanned twice. Mean segment susceptibility, precision (standard deviation of voxel magnetic susceptibilities within one segment), and repeatability (absolute difference in segment mean susceptibility between repeats) of QSM were calculated for each American Heart Association (AHA) myocardial segment. Finally, the feasibility of the method was shown in 10 patients, including four with hemorrhagic infarcts.
Results: The phantom experiment showed a strong linear relationship between measured and predicted susceptibility shifts (R2 > 0.99). For the healthy volunteer cohort, AHA segment analysis showed the mean segment susceptibility was 0.00 ± 0.02 ppm, the mean precision was 0.05 ± 0.04 ppm, and the mean repeatability was 0.02 ± 0.02 ppm. Cardiac QSM was successfully performed in all patients. Focal iron deposits were successfully visualized in the patients with hemorrhagic myocardial infarctions.
Conclusion: The precision and repeatability of cardiac QSM were successfully characterized in phantom and in vivo experiments. The feasibility of the technique was also successfully demonstrated in patients. While challenges still remain, further clinical evaluation of the technique is now warranted.
Trial registration: This work does not report on a health care intervention.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.