Małgorzata Lasota, Grzegorz Zemanek, Olga Barczyk-Woźnicka, Anna Misterka, Anna Wiśniewska, Barbara Stopa, Izabela Kościk, Anna Jagusiak, Leszek Konieczny, Irena Roterman
{"title":"具有过氧化不饱和脂肪酸活性的普鲁士蓝相关铁络合物 FeT 的结构特征。","authors":"Małgorzata Lasota, Grzegorz Zemanek, Olga Barczyk-Woźnicka, Anna Misterka, Anna Wiśniewska, Barbara Stopa, Izabela Kościk, Anna Jagusiak, Leszek Konieczny, Irena Roterman","doi":"10.2217/nnm-2023-0206","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> FeT is a complex of Fe<sup>3+</sup>, ferricyanide and tartrate, similar in structure to Prussian Blue. Its synthesis was planned to produce a potential antiproliferative drug. <b>Methods:</b> Dynamic light scattering was applied to study nanostructures formed by FeT complexes, while their biological activity was tested following changes in cell proliferation using cultured T24 human bladder cancer cells. <b>Results:</b> The antiproliferative activity of FeT derived from its ability to peroxidate unsaturated fatty acids, which can cause cell death through oxidative stress and/or ferroptosis. FeT molecules associate into drop-like nanostructures in water solutions, between 10-130 nm, which can bind albumin. <b>Conclusion:</b> Fatty acid peroxidation is significantly activated by light. The characteristics and reactivity of FeT represent a prospective application in medicine.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"281-292"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural features of Prussian Blue-related iron complex - FeT of activity to peroxidate unsaturated fatty acids.\",\"authors\":\"Małgorzata Lasota, Grzegorz Zemanek, Olga Barczyk-Woźnicka, Anna Misterka, Anna Wiśniewska, Barbara Stopa, Izabela Kościk, Anna Jagusiak, Leszek Konieczny, Irena Roterman\",\"doi\":\"10.2217/nnm-2023-0206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> FeT is a complex of Fe<sup>3+</sup>, ferricyanide and tartrate, similar in structure to Prussian Blue. Its synthesis was planned to produce a potential antiproliferative drug. <b>Methods:</b> Dynamic light scattering was applied to study nanostructures formed by FeT complexes, while their biological activity was tested following changes in cell proliferation using cultured T24 human bladder cancer cells. <b>Results:</b> The antiproliferative activity of FeT derived from its ability to peroxidate unsaturated fatty acids, which can cause cell death through oxidative stress and/or ferroptosis. FeT molecules associate into drop-like nanostructures in water solutions, between 10-130 nm, which can bind albumin. <b>Conclusion:</b> Fatty acid peroxidation is significantly activated by light. The characteristics and reactivity of FeT represent a prospective application in medicine.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"281-292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/nnm-2023-0206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目的:FeT 是一种由 Fe3+、铁氰化物和酒石酸盐组成的复合物,结构与普鲁士蓝相似。计划通过合成这种复合物来生产一种潜在的抗增生药物。研究方法采用动态光散射法研究 FeT 复合物形成的纳米结构,同时利用培养的 T24 人类膀胱癌细胞,根据细胞增殖的变化测试其生物活性。结果显示铁钛的抗增殖活性源于其过氧化不饱和脂肪酸的能力,而不饱和脂肪酸可通过氧化应激和/或铁变态反应导致细胞死亡。铁钛分子在水溶液中结合成水滴状纳米结构,介于 10-130 纳米之间,可与白蛋白结合。结论光能显著激活脂肪酸过氧化反应。FeT的特性和反应性代表了其在医学中的应用前景。
Structural features of Prussian Blue-related iron complex - FeT of activity to peroxidate unsaturated fatty acids.
Aim: FeT is a complex of Fe3+, ferricyanide and tartrate, similar in structure to Prussian Blue. Its synthesis was planned to produce a potential antiproliferative drug. Methods: Dynamic light scattering was applied to study nanostructures formed by FeT complexes, while their biological activity was tested following changes in cell proliferation using cultured T24 human bladder cancer cells. Results: The antiproliferative activity of FeT derived from its ability to peroxidate unsaturated fatty acids, which can cause cell death through oxidative stress and/or ferroptosis. FeT molecules associate into drop-like nanostructures in water solutions, between 10-130 nm, which can bind albumin. Conclusion: Fatty acid peroxidation is significantly activated by light. The characteristics and reactivity of FeT represent a prospective application in medicine.