{"title":"集合预报系统中降水量最优量化预报的研究与应用","authors":"Lianglyu Chen, Yu Xia","doi":"10.1002/met.2173","DOIUrl":null,"url":null,"abstract":"<p>Quantiles of precipitation are widely used in ensemble forecast systems. At present, the common practice is to provide precipitation amounts corresponding to different quantiles to users directly, which will make it difficult for users to extract reliable forecast information. Therefore, this study investigates the statistically optimal (using threat score (TS) as a metric) quantiles of precipitation in an ensemble forecast system constructed using the WRF V4.0 model. The main conclusions are as follows: The threat-score-optimal quantiles for light rain, moderate rain, heavy rain, rainstorm, and heavy rainstorm forecasts are 40%–60%, 60%–70%, 60%–80%, 70%–80%, and 80%, respectively. Overall, the optimal quantile increases with the rise in precipitation magnitude or the extension of forecast lead time. All the optimal quantile forecast products have higher TS than the corresponding control forecast, ensemble mean forecast, and probability-matched ensemble mean forecast products. The merged threat-score-optimal quantile forecast product formed by combining the optimal quantile forecasts of different precipitation magnitudes shows obvious advantages over other products in statistical verification and case studies, and it shows good potential to be operationally implemented in the future.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2173","citationCount":"0","resultStr":"{\"title\":\"Study and application on the optimal quantile forecast of precipitation in an ensemble forecast system\",\"authors\":\"Lianglyu Chen, Yu Xia\",\"doi\":\"10.1002/met.2173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantiles of precipitation are widely used in ensemble forecast systems. At present, the common practice is to provide precipitation amounts corresponding to different quantiles to users directly, which will make it difficult for users to extract reliable forecast information. Therefore, this study investigates the statistically optimal (using threat score (TS) as a metric) quantiles of precipitation in an ensemble forecast system constructed using the WRF V4.0 model. The main conclusions are as follows: The threat-score-optimal quantiles for light rain, moderate rain, heavy rain, rainstorm, and heavy rainstorm forecasts are 40%–60%, 60%–70%, 60%–80%, 70%–80%, and 80%, respectively. Overall, the optimal quantile increases with the rise in precipitation magnitude or the extension of forecast lead time. All the optimal quantile forecast products have higher TS than the corresponding control forecast, ensemble mean forecast, and probability-matched ensemble mean forecast products. The merged threat-score-optimal quantile forecast product formed by combining the optimal quantile forecasts of different precipitation magnitudes shows obvious advantages over other products in statistical verification and case studies, and it shows good potential to be operationally implemented in the future.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.2173\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2173","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Study and application on the optimal quantile forecast of precipitation in an ensemble forecast system
Quantiles of precipitation are widely used in ensemble forecast systems. At present, the common practice is to provide precipitation amounts corresponding to different quantiles to users directly, which will make it difficult for users to extract reliable forecast information. Therefore, this study investigates the statistically optimal (using threat score (TS) as a metric) quantiles of precipitation in an ensemble forecast system constructed using the WRF V4.0 model. The main conclusions are as follows: The threat-score-optimal quantiles for light rain, moderate rain, heavy rain, rainstorm, and heavy rainstorm forecasts are 40%–60%, 60%–70%, 60%–80%, 70%–80%, and 80%, respectively. Overall, the optimal quantile increases with the rise in precipitation magnitude or the extension of forecast lead time. All the optimal quantile forecast products have higher TS than the corresponding control forecast, ensemble mean forecast, and probability-matched ensemble mean forecast products. The merged threat-score-optimal quantile forecast product formed by combining the optimal quantile forecasts of different precipitation magnitudes shows obvious advantages over other products in statistical verification and case studies, and it shows good potential to be operationally implemented in the future.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.