Hakan Aygun, Mohammad Rauf Sheikhi, Hakan Caliskan
{"title":"考虑到航空业的不同需求,不同设计条件下涡轮风扇发动机的热力学、环境和可持续性影响","authors":"Hakan Aygun, Mohammad Rauf Sheikhi, Hakan Caliskan","doi":"10.1002/gch2.202300205","DOIUrl":null,"url":null,"abstract":"<p>In this study, thermodynamic analysis is implemented to the kerosene-fuelled high by-pass turbofan (HBP-TF) engine to assess entropy, exergy, environmental, and sustainability metrics for different design variables such as pressure ratio of high-pressure compressor (HPC-PR) ranging from 7.5 to 8.5 and turbine inlet temperature (TIT) varying from 1400 to 1525 K considering variable needs in the aviation industry. As a novelty, entropic improvement potential (EIP) index for turbomachinery components and specific irreversibility production for the whole engine are calculated. Sustainability-based parameters for different cases are compared with the baseline values of the HBP-TF engine. The combustor has the highest entropy production of 44.4425 kW K<sup>−1</sup> at the baseline. The higher TIT increases the entropy production of the combustor by 16.56%, whereas the higher HPC-PR decreases it by 5.83%. The higher TIT and HPC-PR favorably affect the sustainable efficiency factor of the engine, which is observed as 1.5482 at baseline and increases by 4.5% and 0.058% with the increment of TIT and HPC-PR, respectively. The higher TIT and higher HPC-PR results in lowering sustainability of the engine. The specific irreversibility production of the engine decreases by 3.78% and 0.1171% respectively, as TIT and HPC-PR reach the highest point considered in the study.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300205","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics, Environmental and Sustainability Impacts of a Turbofan Engine Under Different Design Conditions Considering Variable Needs in the Aviation Industry\",\"authors\":\"Hakan Aygun, Mohammad Rauf Sheikhi, Hakan Caliskan\",\"doi\":\"10.1002/gch2.202300205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, thermodynamic analysis is implemented to the kerosene-fuelled high by-pass turbofan (HBP-TF) engine to assess entropy, exergy, environmental, and sustainability metrics for different design variables such as pressure ratio of high-pressure compressor (HPC-PR) ranging from 7.5 to 8.5 and turbine inlet temperature (TIT) varying from 1400 to 1525 K considering variable needs in the aviation industry. As a novelty, entropic improvement potential (EIP) index for turbomachinery components and specific irreversibility production for the whole engine are calculated. Sustainability-based parameters for different cases are compared with the baseline values of the HBP-TF engine. The combustor has the highest entropy production of 44.4425 kW K<sup>−1</sup> at the baseline. The higher TIT increases the entropy production of the combustor by 16.56%, whereas the higher HPC-PR decreases it by 5.83%. The higher TIT and HPC-PR favorably affect the sustainable efficiency factor of the engine, which is observed as 1.5482 at baseline and increases by 4.5% and 0.058% with the increment of TIT and HPC-PR, respectively. The higher TIT and higher HPC-PR results in lowering sustainability of the engine. The specific irreversibility production of the engine decreases by 3.78% and 0.1171% respectively, as TIT and HPC-PR reach the highest point considered in the study.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300205\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300205\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300205","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Thermodynamics, Environmental and Sustainability Impacts of a Turbofan Engine Under Different Design Conditions Considering Variable Needs in the Aviation Industry
In this study, thermodynamic analysis is implemented to the kerosene-fuelled high by-pass turbofan (HBP-TF) engine to assess entropy, exergy, environmental, and sustainability metrics for different design variables such as pressure ratio of high-pressure compressor (HPC-PR) ranging from 7.5 to 8.5 and turbine inlet temperature (TIT) varying from 1400 to 1525 K considering variable needs in the aviation industry. As a novelty, entropic improvement potential (EIP) index for turbomachinery components and specific irreversibility production for the whole engine are calculated. Sustainability-based parameters for different cases are compared with the baseline values of the HBP-TF engine. The combustor has the highest entropy production of 44.4425 kW K−1 at the baseline. The higher TIT increases the entropy production of the combustor by 16.56%, whereas the higher HPC-PR decreases it by 5.83%. The higher TIT and HPC-PR favorably affect the sustainable efficiency factor of the engine, which is observed as 1.5482 at baseline and increases by 4.5% and 0.058% with the increment of TIT and HPC-PR, respectively. The higher TIT and higher HPC-PR results in lowering sustainability of the engine. The specific irreversibility production of the engine decreases by 3.78% and 0.1171% respectively, as TIT and HPC-PR reach the highest point considered in the study.