{"title":"基于局部定向粗糙度的气缸套-活塞环新型高效流动连续性润滑模型","authors":"Wen-Bin Chen, De-Liang Liu, Jiu-Jun Xu","doi":"10.1002/ls.1680","DOIUrl":null,"url":null,"abstract":"<p>The locally oriented roughness is a common feature of surface finished by a machining process, such as the surface of the cylinder liner, and may significantly influence lubrication characteristic. A homogenised transient Reynolds equation for the locally oriented roughness is derived. The Jacobsson–Floberg–Olsson (JFO) boundary conditions was implicitly incorporated into the transient Reynolds equation to ensure the mass flow conservation. On this foundation, a model for the transient lubrication in the cylinder liner-piston ring considering the effects of the surface roughness and cavitation is established. Then, the results of model developed here are compared with those from the stochastic model by Patir and Cheng. and the effect of the direction of roughness on the lubrication properties is analysed. The homogenised transient Reynolds equation and the lubrication model developed here have great potential for understanding and optimising the transient lubrication considering the surface local roughness orientation, cavitation and starved lubrication.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 4","pages":"298-313"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new efficient flow continuity lubrication model for the cylinder liner-piston ring based on the locally oriented roughness\",\"authors\":\"Wen-Bin Chen, De-Liang Liu, Jiu-Jun Xu\",\"doi\":\"10.1002/ls.1680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The locally oriented roughness is a common feature of surface finished by a machining process, such as the surface of the cylinder liner, and may significantly influence lubrication characteristic. A homogenised transient Reynolds equation for the locally oriented roughness is derived. The Jacobsson–Floberg–Olsson (JFO) boundary conditions was implicitly incorporated into the transient Reynolds equation to ensure the mass flow conservation. On this foundation, a model for the transient lubrication in the cylinder liner-piston ring considering the effects of the surface roughness and cavitation is established. Then, the results of model developed here are compared with those from the stochastic model by Patir and Cheng. and the effect of the direction of roughness on the lubrication properties is analysed. The homogenised transient Reynolds equation and the lubrication model developed here have great potential for understanding and optimising the transient lubrication considering the surface local roughness orientation, cavitation and starved lubrication.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"36 4\",\"pages\":\"298-313\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1680\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1680","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A new efficient flow continuity lubrication model for the cylinder liner-piston ring based on the locally oriented roughness
The locally oriented roughness is a common feature of surface finished by a machining process, such as the surface of the cylinder liner, and may significantly influence lubrication characteristic. A homogenised transient Reynolds equation for the locally oriented roughness is derived. The Jacobsson–Floberg–Olsson (JFO) boundary conditions was implicitly incorporated into the transient Reynolds equation to ensure the mass flow conservation. On this foundation, a model for the transient lubrication in the cylinder liner-piston ring considering the effects of the surface roughness and cavitation is established. Then, the results of model developed here are compared with those from the stochastic model by Patir and Cheng. and the effect of the direction of roughness on the lubrication properties is analysed. The homogenised transient Reynolds equation and the lubrication model developed here have great potential for understanding and optimising the transient lubrication considering the surface local roughness orientation, cavitation and starved lubrication.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.