{"title":"利用深度学习检测全球导航卫星系统欺骗行为","authors":"","doi":"10.1186/s13634-023-01103-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"57 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting GNSS spoofing using deep learning\",\"authors\":\"\",\"doi\":\"10.1186/s13634-023-01103-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01103-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01103-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Global Navigation Satellite System (GNSS) is pervasively used in position, navigation, and timing (PNT) applications. As a consequence, important assets have become vulnerable to intentional attacks on GNSS, where of particular relevance is spoofing transmissions that aim at superseding legitimate signals with forged ones in order to control a receiver’s PNT computations. Detecting such attacks is therefore crucial, and this article proposes to employ an algorithm based on deep learning to achieve the task. A data-driven classifier is considered that has two components: a deep learning model that leverages parallelization to reduce its computational complexity and a clustering algorithm that estimates the number and parameters of the spoofing signals. Based on the experimental results, it can be concluded that the proposed scheme exhibits superior performance compared to the existing solutions, especially under moderate-to-high signal-to-noise ratios.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.