Jonathan M. Parrett, Marta Kulczak, Natalia Szudarek-Trepto
{"title":"热应激下的生育能力损失:雄性的生育极限较低,但没有证据表明在敏感性方面存在性别差异","authors":"Jonathan M. Parrett, Marta Kulczak, Natalia Szudarek-Trepto","doi":"10.1111/oik.10329","DOIUrl":null,"url":null,"abstract":"Climate change models predict that the frequency and intensity of heatwaves are likely to increase, therefore understanding population responses to these extreme climatic events will be key in mitigating biodiversity loss. Here, using the male dimorphic bulb mite, <i>Rhizoglyphus robini</i>, we investigate and compare the impact of experimental heat stress on survival and fertility between females and male morphs that differ in the expression of a sexually selected weapon. We show that lethal limits are similar among all individuals, but find clear sex differences, although no difference between morphs, in sub-lethal temperatures causing sterility: female fertility remains high close to lethal limits, whereas both male morphs suffer fertility loss at more than 2.5°C below their lethal limits. Contrastingly, when thermal stress was lower the sexes and morphs do not differ in their thermal sensitivity and declines in reproductive output are comparable. These declines appear to be additive as we observe the greatest declines when both sexes were exposed to thermal stress. In addition, during assays we included an extra treatment that allowed individuals two extra days to recover and found that fertility loss was almost fully recovered when thermal stress was low, but only partially recovered under the most extreme temperatures. The impact of heat stress on fertility therefore appears to be temporary with individuals rapidly recovering: whether recovery can negate negative population level effects remains to be investigated. Our experiments reveal the impact of heat stress on survival and fertility, finding sex-specific fertility loss under the most extreme thermal conditions.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"31 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fertility loss under thermal stress: males have lower fertility limits but no evidence of sex differences in sensitivity\",\"authors\":\"Jonathan M. Parrett, Marta Kulczak, Natalia Szudarek-Trepto\",\"doi\":\"10.1111/oik.10329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change models predict that the frequency and intensity of heatwaves are likely to increase, therefore understanding population responses to these extreme climatic events will be key in mitigating biodiversity loss. Here, using the male dimorphic bulb mite, <i>Rhizoglyphus robini</i>, we investigate and compare the impact of experimental heat stress on survival and fertility between females and male morphs that differ in the expression of a sexually selected weapon. We show that lethal limits are similar among all individuals, but find clear sex differences, although no difference between morphs, in sub-lethal temperatures causing sterility: female fertility remains high close to lethal limits, whereas both male morphs suffer fertility loss at more than 2.5°C below their lethal limits. Contrastingly, when thermal stress was lower the sexes and morphs do not differ in their thermal sensitivity and declines in reproductive output are comparable. These declines appear to be additive as we observe the greatest declines when both sexes were exposed to thermal stress. In addition, during assays we included an extra treatment that allowed individuals two extra days to recover and found that fertility loss was almost fully recovered when thermal stress was low, but only partially recovered under the most extreme temperatures. The impact of heat stress on fertility therefore appears to be temporary with individuals rapidly recovering: whether recovery can negate negative population level effects remains to be investigated. Our experiments reveal the impact of heat stress on survival and fertility, finding sex-specific fertility loss under the most extreme thermal conditions.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10329\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10329","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Fertility loss under thermal stress: males have lower fertility limits but no evidence of sex differences in sensitivity
Climate change models predict that the frequency and intensity of heatwaves are likely to increase, therefore understanding population responses to these extreme climatic events will be key in mitigating biodiversity loss. Here, using the male dimorphic bulb mite, Rhizoglyphus robini, we investigate and compare the impact of experimental heat stress on survival and fertility between females and male morphs that differ in the expression of a sexually selected weapon. We show that lethal limits are similar among all individuals, but find clear sex differences, although no difference between morphs, in sub-lethal temperatures causing sterility: female fertility remains high close to lethal limits, whereas both male morphs suffer fertility loss at more than 2.5°C below their lethal limits. Contrastingly, when thermal stress was lower the sexes and morphs do not differ in their thermal sensitivity and declines in reproductive output are comparable. These declines appear to be additive as we observe the greatest declines when both sexes were exposed to thermal stress. In addition, during assays we included an extra treatment that allowed individuals two extra days to recover and found that fertility loss was almost fully recovered when thermal stress was low, but only partially recovered under the most extreme temperatures. The impact of heat stress on fertility therefore appears to be temporary with individuals rapidly recovering: whether recovery can negate negative population level effects remains to be investigated. Our experiments reveal the impact of heat stress on survival and fertility, finding sex-specific fertility loss under the most extreme thermal conditions.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.