基于自组织神经网络的 MODIS 卫星数据云基高度检索

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-01-17 DOI:10.1134/S1024856023060209
A. V. Skorokhodov, K. N. Pustovalov, E. V. Kharyutkina, V. G. Astafurov
{"title":"基于自组织神经网络的 MODIS 卫星数据云基高度检索","authors":"A. V. Skorokhodov,&nbsp;K. N. Pustovalov,&nbsp;E. V. Kharyutkina,&nbsp;V. G. Astafurov","doi":"10.1134/S1024856023060209","DOIUrl":null,"url":null,"abstract":"<p>An algorithm for retrieval of cloud-base height (CBH) from passive remote sensing data based on artificial intelligence methods is presented. Determining the CBH is considered as a special case of the classification problem. The algorithm is trained by comparing the results of active measurements of the CBH for single-layer clouds by the ground-based ceilometers (ASOS network), CALIOP lidar (CALIPSO satellite), and CPR radar (<i>CloudSat</i> satellite) with the cloud parameters obtained from the MODIS spectroradiometer (<i>Aqua</i> satellite). The results of estimating the capabilities of active tools to determine the CBH depending on the optical thickness of clouds are presented. The CBH retrieval algorithm is based on the use of three independent Kohonen neural networks trained on the data of the above devices. The results of determining the CBH for single-layer clouds by the developed classifier based on daytime MODIS images of the territory of Western Siberia obtained in summer are discussed. It is established that the algorithm generally underestimates the CBH. The average bias of the resulting scores from the ASOS/CALIOP/CPR reference data is −0.2 km with a standard deviation of 1.2 km.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks\",\"authors\":\"A. V. Skorokhodov,&nbsp;K. N. Pustovalov,&nbsp;E. V. Kharyutkina,&nbsp;V. G. Astafurov\",\"doi\":\"10.1134/S1024856023060209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An algorithm for retrieval of cloud-base height (CBH) from passive remote sensing data based on artificial intelligence methods is presented. Determining the CBH is considered as a special case of the classification problem. The algorithm is trained by comparing the results of active measurements of the CBH for single-layer clouds by the ground-based ceilometers (ASOS network), CALIOP lidar (CALIPSO satellite), and CPR radar (<i>CloudSat</i> satellite) with the cloud parameters obtained from the MODIS spectroradiometer (<i>Aqua</i> satellite). The results of estimating the capabilities of active tools to determine the CBH depending on the optical thickness of clouds are presented. The CBH retrieval algorithm is based on the use of three independent Kohonen neural networks trained on the data of the above devices. The results of determining the CBH for single-layer clouds by the developed classifier based on daytime MODIS images of the territory of Western Siberia obtained in summer are discussed. It is established that the algorithm generally underestimates the CBH. The average bias of the resulting scores from the ASOS/CALIOP/CPR reference data is −0.2 km with a standard deviation of 1.2 km.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856023060209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856023060209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了一种基于人工智能方法从被动遥感数据中检索云基高度(CBH)的算法。确定云基高度被视为分类问题的一个特例。该算法是通过比较地面天花板测量仪(ASOS 网络)、CALIOP 激光雷达(CALIPSO 卫星)和 CPR 雷达(CloudSat 卫星)对单层云的 CBH 的主动测量结果与 MODIS 光谱辐射计(Aqua 卫星)获得的云参数来训练的。本文介绍了根据云的光学厚度对主动工具确定 CBH 的能力进行估算的结果。CBH 检索算法基于使用在上述设备数据上训练的三个独立 Kohonen 神经网络。本文讨论了所开发的分类器根据夏季拍摄的西西伯利亚境内日间 MODIS 图像确定单层云 CBH 的结果。结果表明,该算法普遍低估了 CBH。根据 ASOS/CALIOP/CPR 参考数据得出的平均分偏差为-0.2 千米,标准偏差为 1.2 千米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks

An algorithm for retrieval of cloud-base height (CBH) from passive remote sensing data based on artificial intelligence methods is presented. Determining the CBH is considered as a special case of the classification problem. The algorithm is trained by comparing the results of active measurements of the CBH for single-layer clouds by the ground-based ceilometers (ASOS network), CALIOP lidar (CALIPSO satellite), and CPR radar (CloudSat satellite) with the cloud parameters obtained from the MODIS spectroradiometer (Aqua satellite). The results of estimating the capabilities of active tools to determine the CBH depending on the optical thickness of clouds are presented. The CBH retrieval algorithm is based on the use of three independent Kohonen neural networks trained on the data of the above devices. The results of determining the CBH for single-layer clouds by the developed classifier based on daytime MODIS images of the territory of Western Siberia obtained in summer are discussed. It is established that the algorithm generally underestimates the CBH. The average bias of the resulting scores from the ASOS/CALIOP/CPR reference data is −0.2 km with a standard deviation of 1.2 km.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
The Superresonance: The Discovery That Was Not Done More Than One Hundred Years Ago Spatial Distribution of Potential Sources of Carbonaceous Aerosols in Central Siberia The Effect of Electronic Halos on the Scattering Properties of Solid Particles in the Microwave Range Aerosol Sounding of the Troposphere and Stratosphere by Lidar and Aerological Technologies Optical and Geometrical Characteristics of High-Level Clouds from the 2009–2023 Data on Laser Polarization Sensing in Tomsk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1