针对不同坡度和限速路段的改进型节能驾驶策略

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-01-19 DOI:10.1049/itr2.12482
Xiao Liu, Zhongbei Tian, Lin Jiang, Shaofeng Lu, Pingliang Zeng
{"title":"针对不同坡度和限速路段的改进型节能驾驶策略","authors":"Xiao Liu,&nbsp;Zhongbei Tian,&nbsp;Lin Jiang,&nbsp;Shaofeng Lu,&nbsp;Pingliang Zeng","doi":"10.1049/itr2.12482","DOIUrl":null,"url":null,"abstract":"<p>With the increasing concerns about railway energy efficiency, two typical driving strategies have been used in actual train operation. One includes a sequence of full power traction, cruising, coasting, and full braking (CC). The other uses coasting–remotoring (CR) to replace cruising in CC. However, energy-saving performance by CC and CR, which can be affected by route parameters of gradients and speed limits, has not been fully compared and studied. This paper analyses the energy distribution of CC and CR considering various route parameters and proposes an improved strategy for different gradients and speed limits. The detailed energy flow of CC and CR is analysed by Cauchy–Bunyakovsky–Schwarz inequality and the generalised Hölder's inequality, and then, a novel driving strategy CC_CR is designed. To verify the theoretical results and the effectiveness of the proposed strategy, three simulators with CC, CR, and CC_CR driving modes have been developed and implemented into case studies of four scenarios as well as a real-world metro line. Simulation results demonstrate that CR can only outperform CC on routes with steep downhill and CC_CR is always the best strategy. The energy savings of CC_CR can be as much as 15% more than CR and 42% greater than CC.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12482","citationCount":"0","resultStr":"{\"title\":\"An improved energy-efficient driving strategy for routes with various gradients and speed limits\",\"authors\":\"Xiao Liu,&nbsp;Zhongbei Tian,&nbsp;Lin Jiang,&nbsp;Shaofeng Lu,&nbsp;Pingliang Zeng\",\"doi\":\"10.1049/itr2.12482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increasing concerns about railway energy efficiency, two typical driving strategies have been used in actual train operation. One includes a sequence of full power traction, cruising, coasting, and full braking (CC). The other uses coasting–remotoring (CR) to replace cruising in CC. However, energy-saving performance by CC and CR, which can be affected by route parameters of gradients and speed limits, has not been fully compared and studied. This paper analyses the energy distribution of CC and CR considering various route parameters and proposes an improved strategy for different gradients and speed limits. The detailed energy flow of CC and CR is analysed by Cauchy–Bunyakovsky–Schwarz inequality and the generalised Hölder's inequality, and then, a novel driving strategy CC_CR is designed. To verify the theoretical results and the effectiveness of the proposed strategy, three simulators with CC, CR, and CC_CR driving modes have been developed and implemented into case studies of four scenarios as well as a real-world metro line. Simulation results demonstrate that CR can only outperform CC on routes with steep downhill and CC_CR is always the best strategy. The energy savings of CC_CR can be as much as 15% more than CR and 42% greater than CC.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12482\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12482","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对铁路能效的日益关注,在实际列车运行中使用了两种典型的驾驶策略。一种是全功率牵引、巡航、滑行和完全制动(CC)。另一种则使用滑行-重启(CR)来替代 CC 中的巡航。然而,CC 和 CR 的节能性能会受到坡度和速度限制等线路参数的影响,目前还没有对这两种节能方式进行全面的比较和研究。本文分析了 CC 和 CR 在不同路线参数下的能量分布,并提出了针对不同坡度和速度限制的改进策略。通过 Cauchy-Bunyakovsky-Schwarz 不等式和广义的 Hölder 不等式分析了 CC 和 CR 的详细能量流,然后设计了一种新型驾驶策略 CC_CR。为了验证理论结果和所提策略的有效性,我们开发了三种模拟器,分别采用 CC、CR 和 CC_CR 驾驶模式,并将其应用于四种场景的案例研究以及一条真实的地铁线路。模拟结果表明,只有在陡峭的下坡路段,CR 的性能才优于 CC,而 CC_CR 始终是最佳策略。CC_CR 的节能效果比 CR 高出 15%,比 CC 高出 42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved energy-efficient driving strategy for routes with various gradients and speed limits

With the increasing concerns about railway energy efficiency, two typical driving strategies have been used in actual train operation. One includes a sequence of full power traction, cruising, coasting, and full braking (CC). The other uses coasting–remotoring (CR) to replace cruising in CC. However, energy-saving performance by CC and CR, which can be affected by route parameters of gradients and speed limits, has not been fully compared and studied. This paper analyses the energy distribution of CC and CR considering various route parameters and proposes an improved strategy for different gradients and speed limits. The detailed energy flow of CC and CR is analysed by Cauchy–Bunyakovsky–Schwarz inequality and the generalised Hölder's inequality, and then, a novel driving strategy CC_CR is designed. To verify the theoretical results and the effectiveness of the proposed strategy, three simulators with CC, CR, and CC_CR driving modes have been developed and implemented into case studies of four scenarios as well as a real-world metro line. Simulation results demonstrate that CR can only outperform CC on routes with steep downhill and CC_CR is always the best strategy. The energy savings of CC_CR can be as much as 15% more than CR and 42% greater than CC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1