用于去除镉2+和还原 4-硝基苯酚的 CS/PAT/ MWCNT@MgAl-LDHs 纳米复合材料的制备与表征

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of Environmental Health Science and Engineering Pub Date : 2024-01-18 DOI:10.1007/s40201-023-00885-8
Mohammad Saeid Rostami, Mohammad Mehdi Khodaei
{"title":"用于去除镉2+和还原 4-硝基苯酚的 CS/PAT/ MWCNT@MgAl-LDHs 纳米复合材料的制备与表征","authors":"Mohammad Saeid Rostami,&nbsp;Mohammad Mehdi Khodaei","doi":"10.1007/s40201-023-00885-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd<sup>2+</sup> ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd<sup>2+</sup> ions were 25 <sup>0</sup>C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd<sup>2+</sup> 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH<sub>4</sub>. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 1","pages":"179 - 195"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd2+ removal and 4-nitrophenol reduction\",\"authors\":\"Mohammad Saeid Rostami,&nbsp;Mohammad Mehdi Khodaei\",\"doi\":\"10.1007/s40201-023-00885-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd<sup>2+</sup> ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd<sup>2+</sup> ions were 25 <sup>0</sup>C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd<sup>2+</sup> 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH<sub>4</sub>. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 1\",\"pages\":\"179 - 195\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-023-00885-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00885-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了负载在聚 2 氨基噻唑(PAT)/壳聚糖(CS)基质(CPML)上的多壁碳纳米管(MWCNT)@MgAl-层状双氢氧化物(LDH)纳米粒子去除水溶液中 Cd2+ 离子的性能。与纯 CS/PAT 相比,添加了 MWCNT@MgAl-LDHs 的改性 CS/PAT 的去除率显著提高。考察了重金属离子浓度、pH 值、温度、吸附剂用量和接触时间对吸附的影响。Cd2+ 离子的最佳吸附条件为 25 0C,吸附剂用量为 0.06 g,吸附 Cd2+ 的初始浓度为 100 mg/L,pH = 8。测得最大吸附容量为 1106.19 毫克/克。热力学参数值,即吉布斯自由能(ΔG°)、熵变(ΔS°)和焓变(ΔH°)分别表明了吸附过程的可行性、自发性和内热性。假二阶动力学和 Langmuir 模型被选为吸附过程的最佳模型。此外,还成功地测试了 CPML 纳米复合材料(NC)在 NaBH4 存在下的对硝基苯酚(p-NP)还原反应。反应几乎在 6 分钟内完成。制备的 CPML-NC 可连续重复使用三次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd2+ removal and 4-nitrophenol reduction

The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd2+ ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd2+ ions were 25 0C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd2+ 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH4. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
期刊最新文献
Association between particulate matter exposure and acute ischemic stroke admissions in less-polluted areas: a time-series study using a distributed lag nonlinear model Assessing health risks of polycyclic aromatic hydrocarbons (PAHs) in cooked fish using monte carlo simulation: a global review and meta-analysis Correction: Comprehensive systematic review and meta-analysis of microplastic prevalence and abundance in freshwater fish species: the effect of fish species habitat, feeding behavior, and Fulton’s condition factor Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM) Polystyrene nanoplastics: optimized removal using magnetic nano-adsorbent and toxicity assessment in zebrafish embryos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1