D. I. Abzalov, T. G. Akopdzhanyan, N. I. Abzalov, R. A. Kochetkov, V. V. Grachev
{"title":"化学活化二氧化硅镁的造粒效果","authors":"D. I. Abzalov, T. G. Akopdzhanyan, N. I. Abzalov, R. A. Kochetkov, V. V. Grachev","doi":"10.3103/S1061386223040106","DOIUrl":null,"url":null,"abstract":"<p>MgAlON were prepared by self-propagation high temperature synthesis (SHS) using powder and granular mixtures of aluminum, aluminum oxide, magnesium oxide, and magnesium perchlorate. The influence of granulation of starting particles of Al + Al<sub>2</sub>O<sub>3</sub> + MgO + Mg(ClO<sub>4</sub>)<sub>2</sub> powder mixtures on the microstructure and phase composition of combustion products was studied. It was revealed that the granulation of mixtures reduces the combustion temperature and burning velocity. It was found that the combustion products derived from granular mixtures consists of up to four phases (MgAlON, aluminum oxide, aluminum nitride, and unreacted aluminum), while the products of powder mixtures are represented by single MgAlON phase.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"338 - 343"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granulation Effect on Chemically Activated SHS of MgAlON\",\"authors\":\"D. I. Abzalov, T. G. Akopdzhanyan, N. I. Abzalov, R. A. Kochetkov, V. V. Grachev\",\"doi\":\"10.3103/S1061386223040106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MgAlON were prepared by self-propagation high temperature synthesis (SHS) using powder and granular mixtures of aluminum, aluminum oxide, magnesium oxide, and magnesium perchlorate. The influence of granulation of starting particles of Al + Al<sub>2</sub>O<sub>3</sub> + MgO + Mg(ClO<sub>4</sub>)<sub>2</sub> powder mixtures on the microstructure and phase composition of combustion products was studied. It was revealed that the granulation of mixtures reduces the combustion temperature and burning velocity. It was found that the combustion products derived from granular mixtures consists of up to four phases (MgAlON, aluminum oxide, aluminum nitride, and unreacted aluminum), while the products of powder mixtures are represented by single MgAlON phase.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 4\",\"pages\":\"338 - 343\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223040106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Granulation Effect on Chemically Activated SHS of MgAlON
MgAlON were prepared by self-propagation high temperature synthesis (SHS) using powder and granular mixtures of aluminum, aluminum oxide, magnesium oxide, and magnesium perchlorate. The influence of granulation of starting particles of Al + Al2O3 + MgO + Mg(ClO4)2 powder mixtures on the microstructure and phase composition of combustion products was studied. It was revealed that the granulation of mixtures reduces the combustion temperature and burning velocity. It was found that the combustion products derived from granular mixtures consists of up to four phases (MgAlON, aluminum oxide, aluminum nitride, and unreacted aluminum), while the products of powder mixtures are represented by single MgAlON phase.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.