Olivia L. Hajek, Matthew A. Sturchio, Alan K. Knapp
{"title":"支持 C3/C4 混合草地季节性供水假说的实验证据","authors":"Olivia L. Hajek, Matthew A. Sturchio, Alan K. Knapp","doi":"10.1007/s10021-023-00896-4","DOIUrl":null,"url":null,"abstract":"<p>Understanding how cool-season C<sub>3</sub> and warm-season C<sub>4</sub> grasses will respond to climate change is critical for predicting future ecosystem functioning in many grasslands. With warming, C<sub>4</sub> grasses are expected to increase relative to C<sub>3</sub> grasses, but alterations in the seasonal availability of water may also influence C<sub>3</sub>/C<sub>4</sub> dynamics because of their distinct seasons of growth. To better understand how shifts in the seasonal availability of water can affect ecosystem function in a northern mixed-grass prairie in southeastern Wyoming, we reduced early season rainfall (April–June) using rainout shelters and added the amount of excluded precipitation later in the growing season (July–September), effectively shifting spring rainfall to summer rainfall. As expected, this shift in precipitation seasonality altered patterns of soil water availability, leading to a 29% increase in soil respiration and sustained canopy greenness throughout the growing season. Despite these responses, there were no significant differences in C<sub>3</sub> aboveground net primary production (ANPP) between the seasonally shifted treatment and the plots that received ambient precipitation, likely due to the high levels of spring soil moisture present before rainout shelters were deployed that sustained C<sub>3</sub> grass growth. However, in plots with high C<sub>4</sub> grass cover, C<sub>4</sub> ANPP increased significantly in response to increased summer rainfall. Overall, we provide the first experimental evidence that shifts in the seasonality of precipitation, with no change in temperature, will differentially impact C<sub>3</sub> versus C<sub>4</sub> species, altering the dynamics of carbon cycling in this geographically extensive semi-arid grassland.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"48 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Evidence Supporting the Seasonal Availability of Water Hypothesis in a Mixed C3/C4 Grassland\",\"authors\":\"Olivia L. Hajek, Matthew A. Sturchio, Alan K. Knapp\",\"doi\":\"10.1007/s10021-023-00896-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding how cool-season C<sub>3</sub> and warm-season C<sub>4</sub> grasses will respond to climate change is critical for predicting future ecosystem functioning in many grasslands. With warming, C<sub>4</sub> grasses are expected to increase relative to C<sub>3</sub> grasses, but alterations in the seasonal availability of water may also influence C<sub>3</sub>/C<sub>4</sub> dynamics because of their distinct seasons of growth. To better understand how shifts in the seasonal availability of water can affect ecosystem function in a northern mixed-grass prairie in southeastern Wyoming, we reduced early season rainfall (April–June) using rainout shelters and added the amount of excluded precipitation later in the growing season (July–September), effectively shifting spring rainfall to summer rainfall. As expected, this shift in precipitation seasonality altered patterns of soil water availability, leading to a 29% increase in soil respiration and sustained canopy greenness throughout the growing season. Despite these responses, there were no significant differences in C<sub>3</sub> aboveground net primary production (ANPP) between the seasonally shifted treatment and the plots that received ambient precipitation, likely due to the high levels of spring soil moisture present before rainout shelters were deployed that sustained C<sub>3</sub> grass growth. However, in plots with high C<sub>4</sub> grass cover, C<sub>4</sub> ANPP increased significantly in response to increased summer rainfall. Overall, we provide the first experimental evidence that shifts in the seasonality of precipitation, with no change in temperature, will differentially impact C<sub>3</sub> versus C<sub>4</sub> species, altering the dynamics of carbon cycling in this geographically extensive semi-arid grassland.</p>\",\"PeriodicalId\":11406,\"journal\":{\"name\":\"Ecosystems\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecosystems\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10021-023-00896-4\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10021-023-00896-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Experimental Evidence Supporting the Seasonal Availability of Water Hypothesis in a Mixed C3/C4 Grassland
Understanding how cool-season C3 and warm-season C4 grasses will respond to climate change is critical for predicting future ecosystem functioning in many grasslands. With warming, C4 grasses are expected to increase relative to C3 grasses, but alterations in the seasonal availability of water may also influence C3/C4 dynamics because of their distinct seasons of growth. To better understand how shifts in the seasonal availability of water can affect ecosystem function in a northern mixed-grass prairie in southeastern Wyoming, we reduced early season rainfall (April–June) using rainout shelters and added the amount of excluded precipitation later in the growing season (July–September), effectively shifting spring rainfall to summer rainfall. As expected, this shift in precipitation seasonality altered patterns of soil water availability, leading to a 29% increase in soil respiration and sustained canopy greenness throughout the growing season. Despite these responses, there were no significant differences in C3 aboveground net primary production (ANPP) between the seasonally shifted treatment and the plots that received ambient precipitation, likely due to the high levels of spring soil moisture present before rainout shelters were deployed that sustained C3 grass growth. However, in plots with high C4 grass cover, C4 ANPP increased significantly in response to increased summer rainfall. Overall, we provide the first experimental evidence that shifts in the seasonality of precipitation, with no change in temperature, will differentially impact C3 versus C4 species, altering the dynamics of carbon cycling in this geographically extensive semi-arid grassland.
期刊介绍:
The study and management of ecosystems represent the most dynamic field of contemporary ecology. Ecosystem research bridges fundamental ecology and environmental ecology and environmental problem-solving, and spans boundaries of scale, discipline and perspective. Ecosystems features a distinguished team of editors-in-chief and an outstanding international editorial board, and is seen worldwide as a vital home for publishing significant research as well as editorials, mini-reviews and special features.