首页 > 最新文献

Ecosystems最新文献

英文 中文
Controls over Fire Characteristics in Siberian Larch Forests 西伯利亚落叶松森林火灾特征的控制因素
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-09-11 DOI: 10.1007/s10021-024-00927-8
Elizabeth E. Webb, Heather D. Alexander, Michael M. Loranty, Anna C. Talucci, Jeremy W. Lichstein

Fire is the major forest disturbance in Siberian larch (Larix spp.) ecosystems, which occupy 20% of the boreal forest biome and are underlain by large, temperature-protected stocks of soil carbon. Fire is necessary for the persistence of larch forests, but fire can also alter forest stand composition and structure, with important implications for permafrost and carbon and albedo climate feedbacks. Long-term records show that burned area has increased in Siberian larch forests over the past several decades, and extreme climate conditions in recent years have led to record burned areas. Such increases in burn area have the potential to restructure larch ecosystems, yet the fire regime in this remote region is not well understood. Here, we investigated how landscape position, geographic climate variation, and interannual climate variability from 2001 to 2020 affected total burn area, the number of fires, and fire size in Siberian larch forests. The number of fires was positively correlated with metrics of drought (for example, vapor pressure deficit), while fire size was negatively correlated with precipitation in the previous year. Spatial variation in fire size was primarily controlled by landscape position, with larger fires occurring in relatively flat, low-elevation areas with high levels of soil organic carbon. Given that climate change is increasing both vapor pressure deficit and precipitation across the region, our results suggest that future climate change could result in more but smaller fires. Additionally, increasing variability in precipitation could lead to unprecedented extremes in fire size, with future burned area dependent on the magnitude and timing of concurrent increases in temperature and precipitation.

火灾是西伯利亚落叶松(Larix spp.)生态系统的主要森林干扰因素,该生态系统占北方森林生物群落的 20%,其下有大量受温度保护的土壤碳储量。火灾是落叶松森林持续存在的必要条件,但火灾也会改变林分组成和结构,对永久冻土、碳和反照率气候反馈产生重要影响。长期记录显示,在过去几十年里,西伯利亚落叶松林的燃烧面积有所增加,近年来的极端气候条件导致燃烧面积创下了新高。燃烧面积的增加有可能重构落叶松生态系统,但人们对这一偏远地区的火灾机制还不甚了解。在此,我们研究了 2001 年至 2020 年期间景观位置、地理气候变异和年际气候变异如何影响西伯利亚落叶松林的总燃烧面积、火灾次数和火灾规模。火灾次数与干旱指标(如水汽压差)呈正相关,而火灾规模与前一年的降水量呈负相关。火灾规模的空间变化主要受地貌位置的控制,较大的火灾发生在相对平坦、土壤有机碳含量高的低海拔地区。鉴于气候变化正在增加整个地区的水汽压差和降水量,我们的研究结果表明,未来的气候变化可能会导致更多但更小的火灾。此外,降水量变化的增加可能导致火灾规模出现前所未有的极端情况,未来的燃烧面积取决于气温和降水量同时增加的幅度和时间。
{"title":"Controls over Fire Characteristics in Siberian Larch Forests","authors":"Elizabeth E. Webb, Heather D. Alexander, Michael M. Loranty, Anna C. Talucci, Jeremy W. Lichstein","doi":"10.1007/s10021-024-00927-8","DOIUrl":"https://doi.org/10.1007/s10021-024-00927-8","url":null,"abstract":"<p>Fire is the major forest disturbance in Siberian larch (<i>Larix</i> spp.) ecosystems, which occupy 20% of the boreal forest biome and are underlain by large, temperature-protected stocks of soil carbon. Fire is necessary for the persistence of larch forests, but fire can also alter forest stand composition and structure, with important implications for permafrost and carbon and albedo climate feedbacks. Long-term records show that burned area has increased in Siberian larch forests over the past several decades, and extreme climate conditions in recent years have led to record burned areas. Such increases in burn area have the potential to restructure larch ecosystems, yet the fire regime in this remote region is not well understood. Here, we investigated how landscape position, geographic climate variation, and interannual climate variability from 2001 to 2020 affected total burn area, the number of fires, and fire size in Siberian larch forests. The number of fires was positively correlated with metrics of drought (for example, vapor pressure deficit), while fire size was negatively correlated with precipitation in the previous year. Spatial variation in fire size was primarily controlled by landscape position, with larger fires occurring in relatively flat, low-elevation areas with high levels of soil organic carbon. Given that climate change is increasing both vapor pressure deficit and precipitation across the region, our results suggest that future climate change could result in more but smaller fires. Additionally, increasing variability in precipitation could lead to unprecedented extremes in fire size, with future burned area dependent on the magnitude and timing of concurrent increases in temperature and precipitation.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Rangelands to Cropland, Land-Use Change and Its Impact on Soil Organic Carbon Variables in a Peruvian Andean Highlands: A Machine Learning Modeling Approach 秘鲁安第斯高地从牧场到耕地的土地利用变化及其对土壤有机碳变量的影响:机器学习建模方法
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-09-09 DOI: 10.1007/s10021-024-00928-7
Mariella Carbajal, David A. Ramírez, Cecilia Turin, Sean M. Schaeffer, Julie Konkel, Johan Ninanya, Javier Rinza, Felipe De Mendiburu, Percy Zorogastua, Liliana Villaorduña, Roberto Quiroz

Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (δ13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (“bofedales”) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variables using remote sensing data, land-use and land-cover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and δ13CSOC prediction, whereas ANN was the best to model RSOC. “Bofedales” showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted δ13CSOC (− 27.0 ± 0.44 ‰) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of “bofedales” as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and δ13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.

安第斯高原土壤含有大量的土壤有机碳(SOC);然而,要了解 SOC 及其组分的积累和持久性背后的过程,仍需付出更多努力。本研究利用机器学习(ML)算法,在秘鲁中安第斯高地模拟了 SOC 变量--SOC、难溶解 SOC(RSOC)和 SOC 的 13C 同位素组成(δ13CSOC)。为评估 SOC 变量,共采集了 198 个土壤样本(0.3 米深)。利用遥感数据、土地利用和土地覆盖(LULC,九个类别)、气候地形以及取样的物理化学土壤变量,使用四种 ML 算法--随机森林(RF)、支持向量机(SVM)、人工神经网络(ANN)和极端梯度提升(XGB)--对 SOC 变量进行建模。RF 是预测 SOC 和 δ13CSOC 的最佳算法,而 ANN 则是模拟 RSOC 的最佳算法。与其他 LULC 相比,"Bofedales "的 SOC(11.2 ± 1.60%)和 RSOC(1.10 ± 0.23%)高出 2-3 倍,δ13CSOC(- 27.0 ± 0.44 ‰)更贫化,这反映了高碳持久性、高周转率和高植物生产力。这凸显了 "bofedales "作为 SOC 储库的重要性。接近近红外波段的土地利用、土地利用变化和植被指数是模拟 C 变量 SOC 和 δ13CSOC 的最关键环境预测因子。相比之下,气候指数是 RSOC 更重要的环境预测因子。这项研究的结果表明,以射频为重点的 ML 方法在绘制安第斯高地的 SOC 及其组分图方面具有潜力。
{"title":"From Rangelands to Cropland, Land-Use Change and Its Impact on Soil Organic Carbon Variables in a Peruvian Andean Highlands: A Machine Learning Modeling Approach","authors":"Mariella Carbajal, David A. Ramírez, Cecilia Turin, Sean M. Schaeffer, Julie Konkel, Johan Ninanya, Javier Rinza, Felipe De Mendiburu, Percy Zorogastua, Liliana Villaorduña, Roberto Quiroz","doi":"10.1007/s10021-024-00928-7","DOIUrl":"https://doi.org/10.1007/s10021-024-00928-7","url":null,"abstract":"<p>Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the <sup>13</sup>C isotope composition of SOC (δ<sup>13</sup>C<sub>SOC</sub>)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (“bofedales”) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variables using remote sensing data, land-use and land-cover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and δ<sup>13</sup>C<sub>SOC</sub> prediction, whereas ANN was the best to model RSOC. “Bofedales” showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted δ<sup>13</sup>C<sub>SOC</sub> (− 27.0 ± 0.44 ‰) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of “bofedales” as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and δ<sup>13</sup>C<sub>SOC</sub>. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Much Soil Carbon is Derived from Woody Detritus? A Ten-Year Study of 13C Incorporation into Soil Organic Matter 有多少土壤碳来自木质碎屑?13C 融入土壤有机物质的十年研究
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-09-04 DOI: 10.1007/s10021-024-00926-9
Timothy J. Fahey, Alexis K. Heinz, Rachel Mathisson, Catherine Fahey, Joseph B. Yavitt

The importance of woody detritus as a source of soil organic matter is not well constrained. We quantified the recovery of 13C derived from isotopic-enriched sugar maple wood in various C fractions of two temperate forest soils in central New York, USA. Decay rates of small woody debris were quite rapid (k = 0.362 to 0.477 per year) and after 10 years less than 1% of the original wood mass remained in incubation bags. After six years we recovered only 0.26% (± 0.025) of the added 13C in the upper 5 cm of underlying soil. After 10 years this recovery declined to 0.11% (± 0.020) indicating substantial lability of retained SOC; most of this decline occurred from year 6 to 8 in the 1–5 cm depth increment, suggesting that the residue was quite stable at 10 years. The largest fraction of 13C was recovered in microaggregates (45%), especially those occluded within macroaggregates (30%), with a smaller proportion associated with the silt + clay fraction (20%). These proportions did not change significantly from year 6 to 10. Faster decay and higher 13C recovery were coincident with abundant saproxylic invertebrates from Scarabaeidae at one of the sites. We conclude that small woody debris is a minor source of stable SOC in these temperate forests (that is, less than 1% of annual SOC accumulation).

木质碎屑作为土壤有机质来源的重要性还没有得到很好的证实。我们对美国纽约中部两片温带森林土壤中各种碳组分中同位素富集的糖枫木所产生的 13C 的恢复情况进行了量化。小型木质碎屑的衰减速度非常快(k = 0.362 到 0.477/年),10 年后,留在培养袋中的原始木材质量不到 1%。6 年后,我们在下层土壤上部 5 厘米处仅回收了 0.26% (± 0.025)的添加 13C。10 年后,这一回收率下降到 0.11%(± 0.020),表明保留的 SOC 很不稳定;大部分下降发生在第 6 年至第 8 年的 1-5 厘米深度增量中,表明残留物在 10 年后相当稳定。13C 的最大部分是在微团聚体(45%)中回收的,尤其是那些被大团聚体(30%)包裹的微团聚体,与粉土和粘土部分相关的比例较小(20%)。从第 6 年到第 10 年,这些比例没有明显变化。在其中一个地点,腐烂速度更快、13C 回收率更高,这与猩红蝶科的大量吸食无脊椎动物相吻合。我们的结论是,在这些温带森林中,小型木质碎屑是稳定 SOC 的一个次要来源(即不到 SOC 年累积量的 1%)。
{"title":"How Much Soil Carbon is Derived from Woody Detritus? A Ten-Year Study of 13C Incorporation into Soil Organic Matter","authors":"Timothy J. Fahey, Alexis K. Heinz, Rachel Mathisson, Catherine Fahey, Joseph B. Yavitt","doi":"10.1007/s10021-024-00926-9","DOIUrl":"https://doi.org/10.1007/s10021-024-00926-9","url":null,"abstract":"<p>The importance of woody detritus as a source of soil organic matter is not well constrained. We quantified the recovery of <sup>13</sup>C derived from isotopic-enriched sugar maple wood in various C fractions of two temperate forest soils in central New York, USA. Decay rates of small woody debris were quite rapid (k = 0.362 to 0.477 per year) and after 10 years less than 1% of the original wood mass remained in incubation bags. After six years we recovered only 0.26% (± 0.025) of the added <sup>13</sup>C in the upper 5 cm of underlying soil. After 10 years this recovery declined to 0.11% (± 0.020) indicating substantial lability of retained SOC; most of this decline occurred from year 6 to 8 in the 1–5 cm depth increment, suggesting that the residue was quite stable at 10 years. The largest fraction of <sup>13</sup>C was recovered in microaggregates (45%), especially those occluded within macroaggregates (30%), with a smaller proportion associated with the silt + clay fraction (20%). These proportions did not change significantly from year 6 to 10. Faster decay and higher <sup>13</sup>C recovery were coincident with abundant saproxylic invertebrates from Scarabaeidae at one of the sites. We conclude that small woody debris is a minor source of stable SOC in these temperate forests (that is, less than 1% of annual SOC accumulation).</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-fire Recovery Dynamics and Resilience of Ecosystem Services Capacity in Mediterranean-Type Ecosystems 地中海型生态系统的火灾后恢复动态和生态系统服务能力的复原力
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-09-03 DOI: 10.1007/s10021-024-00924-x
Philip K. Roche, C. Sylvie Campagne, Anne Ganteaume

Ecosystem services (ES) in Mediterranean regions are critically affected by forest fires, which pose significant threats to human reliance on these services. This study delves into the post-fire dynamics of ES, emphasising the distinct recovery processes in seeders dominated and resprouters dominated systems. By integrating an ecosystem service capacity matrix with transition matrices, we analysed the temporal recovery patterns of ES after fire disturbances under conditions corresponding to southern France Mediterranean-Type Ecosystems. In seeders dominated environments, recovery is gradual, with services like carbon sequestration and soil quality taking up to 87 years to regain 90% of their capacity post-high-intensity fires. Conversely, resprouters dominated systems show rapid regrowth, with carbon sequestration recovering in as little as 23 years following similar disturbances. Our findings highlight the variable recovery timelines across different ES. Pollination and wild plants display remarkable resilience, with recovery times not exceeding 2 years regardless of fire severity. However, provisioning services such as game provision exhibit lower resilience, requiring up to 67 years for recovery. Cultural services, reflecting emblematic and symbolic values, demonstrate greater resilience, with recovery spanning 3 to 51 years. This study underscores the importance of understanding vegetation types and succession patterns in predicting ES recovery post-fire, offering insights into ecosystem recovery and resilience in fire-prone Mediterranean landscapes.

地中海地区的生态系统服务(ES)受到森林火灾的严重影响,这对人类对这些服务的依赖构成了重大威胁。本研究深入探讨了火灾后生态系统服务的动态变化,强调了播种者占主导地位的系统和重生者占主导地位的系统的不同恢复过程。通过将生态系统服务能力矩阵与过渡矩阵相结合,我们分析了火灾扰动后生态系统服务的时间恢复模式,其条件与法国南部地中海型生态系统一致。在播种者占主导地位的环境中,恢复是渐进的,碳固存和土壤质量等服务需要长达 87 年的时间才能在高强度火灾后恢复其 90% 的能力。相反,以再生植被为主的系统则恢复迅速,在受到类似干扰后,碳固存在短短 23 年内就能恢复。我们的研究结果凸显了不同 ES 的恢复时间表各不相同。授粉和野生植物显示出显著的恢复能力,无论火灾严重程度如何,恢复时间都不超过 2 年。然而,野味供应等供应服务的恢复能力较低,需要长达 67 年的时间才能恢复。反映标志性和象征性价值的文化服务则表现出更强的恢复能力,恢复时间从 3 年到 51 年不等。这项研究强调了了解植被类型和演替模式对预测生态系统服务在火灾后恢复的重要性,为火灾多发的地中海地区的生态系统恢复和恢复能力提供了启示。
{"title":"Post-fire Recovery Dynamics and Resilience of Ecosystem Services Capacity in Mediterranean-Type Ecosystems","authors":"Philip K. Roche, C. Sylvie Campagne, Anne Ganteaume","doi":"10.1007/s10021-024-00924-x","DOIUrl":"https://doi.org/10.1007/s10021-024-00924-x","url":null,"abstract":"<p>Ecosystem services (ES) in Mediterranean regions are critically affected by forest fires, which pose significant threats to human reliance on these services. This study delves into the post-fire dynamics of ES, emphasising the distinct recovery processes in seeders dominated and resprouters dominated systems. By integrating an ecosystem service capacity matrix with transition matrices, we analysed the temporal recovery patterns of ES after fire disturbances under conditions corresponding to southern France Mediterranean-Type Ecosystems. In seeders dominated environments, recovery is gradual, with services like carbon sequestration and soil quality taking up to 87 years to regain 90% of their capacity post-high-intensity fires. Conversely, resprouters dominated systems show rapid regrowth, with carbon sequestration recovering in as little as 23 years following similar disturbances. Our findings highlight the variable recovery timelines across different ES. Pollination and wild plants display remarkable resilience, with recovery times not exceeding 2 years regardless of fire severity. However, provisioning services such as game provision exhibit lower resilience, requiring up to 67 years for recovery. Cultural services, reflecting emblematic and symbolic values, demonstrate greater resilience, with recovery spanning 3 to 51 years. This study underscores the importance of understanding vegetation types and succession patterns in predicting ES recovery post-fire, offering insights into ecosystem recovery and resilience in fire-prone Mediterranean landscapes.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen and Phosphorus Addition Affect Soil Respiration in Northern Hardwood Forests 氮和磷的添加会影响北部阔叶林的土壤呼吸作用
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-08-14 DOI: 10.1007/s10021-024-00912-1
T. A. Mann, R. D. Yanai, T. J. Fahey, A. B. Reinmann

Soil respiration is the largest single efflux in the global carbon cycle and varies in complex ways with climate, vegetation, and soils. The suppressive effect of nitrogen (N) addition on soil respiration is well documented, but the extent to which it may be moderated by stand age or the availability of soil phosphorus (P) is not well understood. We quantified the response of soil respiration to manipulation of soil N and P availability in a full-factorial N x P fertilization experiment spanning 10 years in 13 northern hardwood forests in the White Mountains of New Hampshire, USA. We analyzed data for 2011 alone, to account for potential treatment effects unique to the first year of fertilization, and for three 3-year periods; data from each 3-year period was divided into spring, summer, and fall. Nitrogen addition consistently suppressed soil respiration by up to 14% relative to controls (p ≤ 0.01 for the main effect of N in 5 of 10 analysis periods). This response was tempered when P was also added, reducing the suppressive effect of N addition from 24 to 1% in one of the ten analysis periods (summer 2012–2014, p = 0.01 for the interaction of N and P). This interaction effect is consistent with observations of reduced foliar N and available soil N following P addition. Mid-successional stands (26–41 years old at the time of the first nutrient addition) consistently had the lowest rates of soil respiration across stand age classes (1.4–6.6 µmol CO2 m−2 s−1), and young stands had the highest (2.5–8.5 µmol CO2 m−2 s−1). In addition to these important effects of treatment and stand age, we observed an unexpected increase in soil respiration, which doubled in 10 years and was not explained by soil temperature patterns, nutrient additions, or increased in fine-root biomass.

土壤呼吸是全球碳循环中最大的单项流出量,并随着气候、植被和土壤的变化而发生复杂的变化。氮(N)添加对土壤呼吸的抑制作用已得到充分证实,但其受林龄或土壤磷(P)可用性影响的程度还不十分清楚。我们在美国新罕布什尔州白山的 13 个北方阔叶林中进行了为期 10 年的全因子氮x磷施肥实验,量化了土壤呼吸对土壤氮和磷供应量的影响。我们仅分析了 2011 年的数据,以考虑施肥第一年可能产生的独特处理效果,并分析了三个 3 年期的数据;每个 3 年期的数据分为春季、夏季和秋季。与对照组相比,氮的添加持续抑制了土壤呼吸作用,最高达 14%(在 10 个分析期中的 5 个分析期,氮的主效应 p ≤ 0.01)。当同时添加磷时,这一反应有所缓和,在 10 个分析期中的一个分析期(2012-2014 年夏季,氮和磷的交互作用 p = 0.01),添加氮的抑制作用从 24% 降至 1%。这种交互作用效果与叶面氮和可用土壤氮在添加磷后减少的观察结果一致。中生林分(首次添加养分时树龄为 26-41 年)的土壤呼吸速率在所有林分年龄等级中一直最低(1.4-6.6 µmol CO2 m-2 s-1),而幼林分则最高(2.5-8.5 µmol CO2 m-2 s-1)。除了处理和林分年龄的这些重要影响外,我们还观察到土壤呼吸作用意外增加,10 年内增加了一倍,而土壤温度模式、养分添加或细根生物量的增加都无法解释这一现象。
{"title":"Nitrogen and Phosphorus Addition Affect Soil Respiration in Northern Hardwood Forests","authors":"T. A. Mann, R. D. Yanai, T. J. Fahey, A. B. Reinmann","doi":"10.1007/s10021-024-00912-1","DOIUrl":"https://doi.org/10.1007/s10021-024-00912-1","url":null,"abstract":"<p>Soil respiration is the largest single efflux in the global carbon cycle and varies in complex ways with climate, vegetation, and soils. The suppressive effect of nitrogen (N) addition on soil respiration is well documented, but the extent to which it may be moderated by stand age or the availability of soil phosphorus (P) is not well understood. We quantified the response of soil respiration to manipulation of soil N and P availability in a full-factorial N x P fertilization experiment spanning 10 years in 13 northern hardwood forests in the White Mountains of New Hampshire, USA. We analyzed data for 2011 alone, to account for potential treatment effects unique to the first year of fertilization, and for three 3-year periods; data from each 3-year period was divided into spring, summer, and fall. Nitrogen addition consistently suppressed soil respiration by up to 14% relative to controls (<i>p</i> ≤ 0.01 for the main effect of N in 5 of 10 analysis periods). This response was tempered when P was also added, reducing the suppressive effect of N addition from 24 to 1% in one of the ten analysis periods (summer 2012–2014, <i>p</i> = 0.01 for the interaction of N and P). This interaction effect is consistent with observations of reduced foliar N and available soil N following P addition. Mid-successional stands (26–41 years old at the time of the first nutrient addition) consistently had the lowest rates of soil respiration across stand age classes (1.4–6.6 µmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup>), and young stands had the highest (2.5–8.5 µmol CO<sub>2</sub> m<sup>−2</sup> s<sup>−1</sup>). In addition to these important effects of treatment and stand age, we observed an unexpected increase in soil respiration, which doubled in 10 years and was not explained by soil temperature patterns, nutrient additions, or increased in fine-root biomass.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil Legacies of Tree Species Composition in Mature Forest Affect Tree Seedlings’ Performance 成熟森林中树种组成的土壤遗产影响树苗的表现
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-08-05 DOI: 10.1007/s10021-024-00923-y
Els Dhiedt, Lander Baeten, Pallieter De Smedt, Bogdan Jaroszewicz, Kris Verheyen

Trees affect the biotic and abiotic properties of the soil in which they grow. Tree species-specific effects can persist for a long time, even after the trees have been removed. We investigated to what extent such soil legacies of different tree species may impact tree seedlings in their emergence and growth. We performed a plant–soil feedback experiment, using soil that was conditioned in plots that vary in tree species composition in Białowieża Forest, Poland. Soil was taken from plots varying in proportion of birch, hornbeam, pine, and oak. In each soil, seeds of the same four target species were sown in pots. Seedling emergence and growth were monitored for one growing season. To further explore biotic implications of soil legacies, ectomycorrhizal root tip colonization of oak, a keystone forest species, was determined. We found no effect of soil legacies of tree species on the emergence measures. We, however, found a clear negative effect of pine legacies on the total biomass of all four seedling species. In addition, we found relationships between the presence of pine and soil fertility and between soil fertility and root tip colonization. Root tip colonization was positively correlated with the biomass of oak seedlings. We conclude that tree species can leave legacies that persist after that species has been removed. These legacies influence the growth of the next generation of trees likely via abiotic and biotic pathways. Thus, the choice of species in today’s forest may also matter for the structure and composition of future forests.

树木会影响其生长土壤的生物和非生物特性。树种特有的影响会持续很长时间,甚至在树木被移走之后。我们研究了不同树种在土壤中的遗留物会在多大程度上影响树苗的萌发和生长。我们在波兰比亚沃韦扎森林(Białowieża Forest)进行了一项植物-土壤反馈实验,使用的土壤是在不同树种组成的地块中调节过的。土壤取自桦树、黄杨、松树和橡树比例不同的地块。在每块土壤中,用花盆播种了相同的四种目标树种的种子。在一个生长季中对幼苗的出苗和生长情况进行了监测。为了进一步探究土壤遗留物对生物的影响,我们测定了栎树(一种重要的森林物种)的外生菌根尖定殖情况。我们发现,树种的土壤遗留物对萌发测量没有影响。但是,我们发现松树遗留物对所有四种幼苗的总生物量有明显的负面影响。此外,我们还发现了松树的存在与土壤肥力之间的关系,以及土壤肥力与根尖定殖之间的关系。根尖定植与橡树幼苗的生物量呈正相关。我们的结论是,树种会在被移除后留下持续存在的遗产。这些遗产可能通过非生物和生物途径影响下一代树木的生长。因此,今天森林中树种的选择也可能关系到未来森林的结构和组成。
{"title":"Soil Legacies of Tree Species Composition in Mature Forest Affect Tree Seedlings’ Performance","authors":"Els Dhiedt, Lander Baeten, Pallieter De Smedt, Bogdan Jaroszewicz, Kris Verheyen","doi":"10.1007/s10021-024-00923-y","DOIUrl":"https://doi.org/10.1007/s10021-024-00923-y","url":null,"abstract":"<p>Trees affect the biotic and abiotic properties of the soil in which they grow. Tree species-specific effects can persist for a long time, even after the trees have been removed. We investigated to what extent such soil legacies of different tree species may impact tree seedlings in their emergence and growth. We performed a plant–soil feedback experiment, using soil that was conditioned in plots that vary in tree species composition in Białowieża Forest, Poland. Soil was taken from plots varying in proportion of birch, hornbeam, pine, and oak. In each soil, seeds of the same four target species were sown in pots. Seedling emergence and growth were monitored for one growing season. To further explore biotic implications of soil legacies, ectomycorrhizal root tip colonization of oak, a keystone forest species, was determined. We found no effect of soil legacies of tree species on the emergence measures. We, however, found a clear negative effect of pine legacies on the total biomass of all four seedling species. In addition, we found relationships between the presence of pine and soil fertility and between soil fertility and root tip colonization. Root tip colonization was positively correlated with the biomass of oak seedlings. We conclude that tree species can leave legacies that persist after that species has been removed. These legacies influence the growth of the next generation of trees likely via abiotic and biotic pathways. Thus, the choice of species in today’s forest may also matter for the structure and composition of future forests.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Compost Amendment Type and Application Frequency on a Fire-Impacted Grassland Ecosystem 堆肥改良剂类型和施用频率对受火灾影响的草地生态系统的影响
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-08-05 DOI: 10.1007/s10021-024-00925-w
Tyler L. Anthony, Holly J. Stover, Jeremy J. James, Whendee L. Silver

Composting organic matter can lower the global warming potential of food and agricultural waste and provide a nutrient-rich soil amendment. Compost applications generally increase net primary production (NPP) and soil water-holding capacity and may stimulate soil carbon (C) sequestration. Questions remain regarding the effects of compost nitrogen (N) concentrations and application rates on soil C and greenhouse gas dynamics. In this study, we explored the effects of compost with different initial N quality (food waste versus green waste compost) on soil greenhouse gas fluxes, aboveground biomass, and soil C and N pools in a fire-impacted annual grassland ecosystem. Composts were applied annually once, twice, or three times prior to the onset of the winter rainy season. A low-intensity fire event after the first growing season also allowed us to explore how compost-amended grasslands respond to burning events, which are expected to increase with climate change. After four growing seasons, all compost treatments significantly increased soil C pools from 9.5 ± 0.9 to 30.2 ± 0.7 Mg C ha−1 (0–40 cm) and 19.5 ± 0.9 to 40.1 ± 0.7 Mg C ha−1 (0–40 cm) relative to burned and unburned controls, respectively. Gains exceeded the compost-C applied, representing newly fixed C. The higher N food waste compost treatments yielded more cumulative soil C (5.2–10.9 Mg C ha−1) and aboveground biomass (0.19–0.66 Mg C ha−1) than the lower N green waste compost treatments, suggesting greater N inputs further increased soil stocks. The three-time green waste application increased soil C and N stocks relative to a single application of either compost. There was minimal impact on net ecosystem greenhouse gas emissions. Aboveground biomass accumulation was higher in all compost treatments relative to controls, likely due to increased water-holding capacity and N availability. Results show that higher N compost resulted in larger C gains with little offset from greenhouse gas emissions and that compost amendments may help mediate effects of low-intensity fire by increasing fertility and water-holding capacity.

有机物堆肥可以降低食品和农业废弃物的全球升温潜能值,并提供营养丰富的土壤改良剂。施用堆肥通常会提高净初级生产力(NPP)和土壤持水能力,并可促进土壤碳(C)固存。关于堆肥氮(N)浓度和施用率对土壤碳和温室气体动态的影响,仍然存在一些问题。在这项研究中,我们探讨了不同初始氮质量的堆肥(厨余堆肥和绿化垃圾堆肥)对受火灾影响的一年生草地生态系统中土壤温室气体通量、地上生物量以及土壤碳库和氮库的影响。堆肥每年在冬季雨季来临前施用一次、两次或三次。在第一个生长季之后,我们还进行了一次低强度的火灾试验,以探索经堆肥改良的草地如何应对火灾,预计火灾会随着气候变化而增加。经过四个生长季后,与燃烧和未燃烧对照组相比,所有堆肥处理都显著增加了土壤碳库,分别从 9.5 ± 0.9 到 30.2 ± 0.7 兆克碳/公顷(0-40 厘米)和 19.5 ± 0.9 到 40.1 ± 0.7 兆克碳/公顷(0-40 厘米)。与含氮量较低的绿色垃圾堆肥处理相比,含氮量较高的食物垃圾堆肥处理产生了更多的累积土壤碳(5.2-10.9 兆克碳/公顷-1)和地上生物量(0.19-0.66 兆克碳/公顷-1),表明更多的氮投入进一步增加了土壤储量。与单次施用两种堆肥相比,三次施用绿色废物可增加土壤中的碳和氮储量。这对生态系统温室气体净排放量的影响微乎其微。与对照组相比,所有堆肥处理的地上生物量积累都更高,这可能是由于持水能力和氮的可用性提高了。结果表明,高氮堆肥能带来更大的碳增量,而温室气体排放几乎无法抵消;堆肥添加物可通过提高肥力和持水能力来帮助调节低强度火灾的影响。
{"title":"Impacts of Compost Amendment Type and Application Frequency on a Fire-Impacted Grassland Ecosystem","authors":"Tyler L. Anthony, Holly J. Stover, Jeremy J. James, Whendee L. Silver","doi":"10.1007/s10021-024-00925-w","DOIUrl":"https://doi.org/10.1007/s10021-024-00925-w","url":null,"abstract":"<p>Composting organic matter can lower the global warming potential of food and agricultural waste and provide a nutrient-rich soil amendment. Compost applications generally increase net primary production (NPP) and soil water-holding capacity and may stimulate soil carbon (C) sequestration. Questions remain regarding the effects of compost nitrogen (N) concentrations and application rates on soil C and greenhouse gas dynamics. In this study, we explored the effects of compost with different initial N quality (food waste versus green waste compost) on soil greenhouse gas fluxes, aboveground biomass, and soil C and N pools in a fire-impacted annual grassland ecosystem. Composts were applied annually once, twice, or three times prior to the onset of the winter rainy season. A low-intensity fire event after the first growing season also allowed us to explore how compost-amended grasslands respond to burning events, which are expected to increase with climate change. After four growing seasons, all compost treatments significantly increased soil C pools from 9.5 ± 0.9 to 30.2 ± 0.7 Mg C ha<sup>−1</sup> (0–40 cm) and 19.5 ± 0.9 to 40.1 ± 0.7 Mg C ha<sup>−1</sup> (0–40 cm) relative to burned and unburned controls, respectively. Gains exceeded the compost-C applied, representing newly fixed C. The higher N food waste compost treatments yielded more cumulative soil C (5.2–10.9 Mg C ha<sup>−1</sup>) and aboveground biomass (0.19–0.66 Mg C ha<sup>−1</sup>) than the lower N green waste compost treatments, suggesting greater N inputs further increased soil stocks. The three-time green waste application increased soil C and N stocks relative to a single application of either compost. There was minimal impact on net ecosystem greenhouse gas emissions. Aboveground biomass accumulation was higher in all compost treatments relative to controls, likely due to increased water-holding capacity and N availability. Results show that higher N compost resulted in larger C gains with little offset from greenhouse gas emissions and that compost amendments may help mediate effects of low-intensity fire by increasing fertility and water-holding capacity.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Native Woody Understory on Invasive Grasses and Soil Nitrogen Dynamics Under Plantation and Remnant Montane Tropical Trees 在种植园和残留的山地热带树木下,原生林下植物对入侵草和土壤氮动态的影响
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-07-29 DOI: 10.1007/s10021-024-00922-z
Carla M. D’Antonio, Evan Rehm, Cheryl Elgersma, Stephanie G. Yelenik

While the influence of canopy trees on soils in natural and restored forest environments is well studied, the influence of understory species is not. Here, we evaluate the effects of outplanted native woody understory on invasive grass biomass and soil nutrient properties in heavily grass-invaded 30 + year-old plantations of a native N-fixing tree Acacia koa in Hawai‘i. We analyze soils from under A. koa trees with versus without planted woody understory and compare these to soils from under remnant pasture trees of the pre-deforestation dominant, Metrosideros polymorpha where passive recruitment of native woody understory has occurred since the cessation of grazing. Simultaneously, we experimentally planted understory species at three times the density used by managers to see if this could quickly decrease grass biomass and change soil nutrient dynamics. We found that invasive grass biomass declined with understory planting in surveyed and experimental sites. Yet, woody understory abundance had no effect on N cycling. Short-term N availability and nitrification potential were higher under A. koa than M. polymorpha trees regardless of understory. Net N mineralization either did not differ (~ 1 mo) between canopy species or was higher (171 day incubations) under remnant M. polymorpha where organic matter was also higher. The only influence of understory on soil was a positive correlation with loss-on-ignition (organic matter) under M. polymorpha. We also demonstrate differential controls over N cycling under the two canopy tree species. Overall, understory restoration has not changed soil characteristics even as invasive grass biomass declines.

虽然冠层树木对自然和恢复森林环境中土壤的影响研究得很透彻,但对林下树种的影响研究得还不够。在这里,我们评估了在夏威夷一种固氮树种相思可可(Acacia koa)树龄 30 多年的种植园中,外植原生林下植物对入侵草生物量和土壤养分特性的影响。我们分析了寇阿相思树下的土壤与未种植林下植被的土壤,并将其与植树造林前的优势树种 Metrosideros polymorpha 的残存牧草树下的土壤进行了比较。与此同时,我们试验性地以管理者使用密度的三倍种植林下物种,以了解这样做是否能迅速减少草的生物量并改变土壤养分动态。我们发现,在调查地点和实验地点种植林下物种后,入侵草的生物量有所下降。然而,林下植物的丰度对氮循环没有影响。无论林下植被如何,寇阿树的短期氮供应量和硝化潜力都高于多芒果树。冠层树种之间的净氮矿化度要么没有差异(约 1 个月),要么在有机质也较高的残余 M. polymorpha 树下更高(171 天培养)。林下植物对土壤的唯一影响是与 M. polymorpha 下的点火损失(有机质)呈正相关。我们还证明了两种冠层树种对氮循环的不同控制。总体而言,即使入侵草生物量下降,林下植被恢复也没有改变土壤特性。
{"title":"Influence of Native Woody Understory on Invasive Grasses and Soil Nitrogen Dynamics Under Plantation and Remnant Montane Tropical Trees","authors":"Carla M. D’Antonio, Evan Rehm, Cheryl Elgersma, Stephanie G. Yelenik","doi":"10.1007/s10021-024-00922-z","DOIUrl":"https://doi.org/10.1007/s10021-024-00922-z","url":null,"abstract":"<p>While the influence of canopy trees on soils in natural and restored forest environments is well studied, the influence of understory species is not. Here, we evaluate the effects of outplanted native woody understory on invasive grass biomass and soil nutrient properties in heavily grass-invaded 30 + year-old plantations of a native N-fixing tree <i>Acacia koa</i> in Hawai‘i. We analyze soils from under <i>A. koa</i> trees with versus without planted woody understory and compare these to soils from under remnant pasture trees of the pre-deforestation dominant, <i>Metrosideros polymorpha</i> where passive recruitment of native woody understory has occurred since the cessation of grazing. Simultaneously, we experimentally planted understory species at three times the density used by managers to see if this could quickly decrease grass biomass and change soil nutrient dynamics. We found that invasive grass biomass declined with understory planting in surveyed and experimental sites. Yet, woody understory abundance had no effect on N cycling. Short-term N availability and nitrification potential were higher under <i>A. koa</i> than <i>M. polymorpha</i> trees regardless of understory. Net N mineralization either did not differ (~ 1 mo) between canopy species or was higher (171 day incubations) under remnant <i>M. polymorpha</i> where organic matter was also higher. The only influence of understory on soil was a positive correlation with loss-on-ignition (organic matter) under <i>M. polymorpha</i>. We also demonstrate differential controls over <i>N</i> cycling under the two canopy tree species. Overall, understory restoration has not changed soil characteristics even as invasive grass biomass declines.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of Organic Matter Transport, Storage, and Processing in a Non-perennial Mediterranean River Network 非常年性地中海河网中有机物的运输、储存和加工动力学
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-07-19 DOI: 10.1007/s10021-024-00910-3
Oriana Llanos-Paez, Junyu Qi, Nils Gutierrez, Miriam Colls, Sergi Sabater, Vicenç Acuña

Freshwater ecosystems play a key role in the global carbon cycle by collecting, transporting, and processing a significant portion of global organic carbon. These processes can be disrupted in non-perennial rivers due to their changing hydrological patterns. We investigated how environmental factors influence organic matter dynamics in the Algars, a Mediterranean non-perennial river basin in the North-East Iberian Peninsula. We conducted seasonal sampling in 16 sites across the river network, collecting samples for (i) storage of benthic organic matter, (ii) transport of dissolved organic carbon and particulate organic matter, and (iii) organic matter processing via aerobic respiration in sediments (Raz–Rru method). We observed pronounced spatial and temporal fluctuations in organic matter processes, especially during distinct periods like summer and autumn. Consistent seasonal patterns of organic matter transport showed a remarkable longitudinal increase downstream, similar to observed aerobic respiration in sediments. Notably, high-flow events doubled observed seasonal transport (mean DOC load: 2344 ± 735 kg/day). Irregular spatial storage patterns between dry and wet channel sections were related to land use and flow intermittency. Notably, storage in dry channel sections was generally ten times higher than wet sections. Our study emphasizes the intricate influence of specific environmental variables on organic matter processes, within different organic matter fractions (for example, coarse and dissolved organic matter). Frequency of non-flow events, seasonal hydrological changes, and land use predominantly govern organic matter dynamics in the Algars basin. Understanding organic carbon dynamics in non-perennial systems will help estimate the impact of hydrological alterations associated with global change on river systems.

淡水生态系统在全球碳循环中发挥着关键作用,收集、运输和处理全球有机碳的很大一部分。由于水文模式的变化,这些过程在非常年河流中可能会受到破坏。我们研究了环境因素如何影响伊比利亚半岛东北部的地中海非多年河流流域阿尔加尔斯河的有机物动态。我们在整个河网的 16 个地点进行了季节性取样,收集了以下方面的样本:(i) 底栖有机物的储存;(ii) 溶解有机碳和颗粒有机物的迁移;(iii) 通过沉积物中的有氧呼吸对有机物的处理(Raz-Rru 法)。我们观察到有机物处理过程存在明显的时空波动,尤其是在夏秋等不同时期。有机物迁移的季节性模式一致,显示出显著的下游纵向增长,这与在沉积物中观察到的有氧呼吸类似。值得注意的是,大流量事件使观测到的季节性迁移量增加了一倍(平均 DOC 负荷:2344 ± 735 千克/天)。干河道和湿河道断面之间不规则的空间储存模式与土地利用和水流间歇性有关。值得注意的是,干河道断面的储量通常是湿河道断面的十倍。我们的研究强调了特定环境变量对不同有机物组分(如粗有机物和溶解有机物)中有机物过程的复杂影响。阿尔加斯河流域的有机物动态主要受无水流事件频率、季节性水文变化和土地利用的影响。了解非多年生系统中的有机碳动态将有助于估计与全球变化相关的水文变化对河流系统的影响。
{"title":"Dynamics of Organic Matter Transport, Storage, and Processing in a Non-perennial Mediterranean River Network","authors":"Oriana Llanos-Paez, Junyu Qi, Nils Gutierrez, Miriam Colls, Sergi Sabater, Vicenç Acuña","doi":"10.1007/s10021-024-00910-3","DOIUrl":"https://doi.org/10.1007/s10021-024-00910-3","url":null,"abstract":"<p>Freshwater ecosystems play a key role in the global carbon cycle by collecting, transporting, and processing a significant portion of global organic carbon. These processes can be disrupted in non-perennial rivers due to their changing hydrological patterns. We investigated how environmental factors influence organic matter dynamics in the Algars, a Mediterranean non-perennial river basin in the North-East Iberian Peninsula. We conducted seasonal sampling in 16 sites across the river network, collecting samples for (i) storage of benthic organic matter, (ii) transport of dissolved organic carbon and particulate organic matter, and (iii) organic matter processing via aerobic respiration in sediments (Raz–Rru method). We observed pronounced spatial and temporal fluctuations in organic matter processes, especially during distinct periods like summer and autumn. Consistent seasonal patterns of organic matter transport showed a remarkable longitudinal increase downstream, similar to observed aerobic respiration in sediments. Notably, high-flow events doubled observed seasonal transport (mean DOC load: 2344 ± 735 kg/day). Irregular spatial storage patterns between dry and wet channel sections were related to land use and flow intermittency. Notably, storage in dry channel sections was generally ten times higher than wet sections. Our study emphasizes the intricate influence of specific environmental variables on organic matter processes, within different organic matter fractions (for example, coarse and dissolved organic matter). Frequency of non-flow events, seasonal hydrological changes, and land use predominantly govern organic matter dynamics in the Algars basin. Understanding organic carbon dynamics in non-perennial systems will help estimate the impact of hydrological alterations associated with global change on river systems.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ? 计算森林的氮吸收率:哪些成分可以省略、简化或从性状数据库中提取,哪些必须现场测量?
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-06-27 DOI: 10.1007/s10021-024-00919-8
Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley

Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.

量化不同类型森林的氮吸收率对一系列生态问题至关重要,包括全球气候变化模型的参数化。然而,由于收集原位数据需要大量人力,因此很少有森林氮吸收率的测量数据。在此,我们试图通过确定必须在原地进行的测量和可以从数据库中省略或近似的测量来优化数据收集工作。我们估算了美国伊利诺斯州利斯尔莫顿植物园的 18 个成熟单优势林分的氮吸收率,这些林分由 13 种不同的物种组成。我们在现场测量了所有氮浓度、叶片分配和细根生物量。我们通过原位茎直径和茎芯测量值结合异速方程估算木材生物量增量。我们根据数据库中的数值估算了细根周转率。我们分析了单优势森林森林资源评估地点的类似公开数据。至少在单优势森林中,准确估算森林氮吸收率似乎需要对细根生产力进行现场测量,而且与叶片生产力的现场测量结果搭配使用效果会更好。一般来说,木材生产力和组织氮浓度可从更高分类级别的性状数据库中获取。按物种对叶片或细根进行仔细分类很费时间,但对氮吸收率的估算影响不大。通过将研究工作仅局限于关键的原位测量,未来的研究可以最大限度地提高研究效率,找出不同梯度氮吸收模式的驱动因素。
{"title":"Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ?","authors":"Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley","doi":"10.1007/s10021-024-00919-8","DOIUrl":"https://doi.org/10.1007/s10021-024-00919-8","url":null,"abstract":"<p>Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ecosystems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1