{"title":"镍、铝和碳化钛粉末混合物热爆炸制备的 Ni3Al-TiC 复合材料的结构、相组成和硬度","authors":"K. V. Ivanov, K. O. Akimov, M. G. Figurko","doi":"10.3103/S1061386223040052","DOIUrl":null,"url":null,"abstract":"<p>Using scanning electron microscopy, X-ray phase analysis, and hardness measurement we investigated the structure, phase composition, and mechanical properties of Ni<sub>3</sub>Al–TiC composite (TiC content varied in the interval from 0 to 30 vol %) fabricated by self-propagating high-temperature synthesis in the thermal explosion mode from a powder mixture of nickel, aluminum, and titanium carbide. It was found that the synthesis of Ni<sub>3</sub>Al intermetallic compound occurred almost completely when TiC content in the green powder mixture was up to 15 vol %. TiC particles were arranged in clusters and individually. Each particle, including in the clusters, was surrounded with the matrix material. The hardness of the composite essentially increased with an increase in the TiC content in the green powder mixture up to 10 vol %. Then the hardness gain was slow. The matrix of the composite contained Ni<sub>3</sub>Al and NiAl intermetallic phases as well as unreacted nickel when the fraction of TiC in the green powder mixture increased to 30 vol %. TiC particles were adjacent to each other in the clusters and there was a free volume between them. Thus, it was concluded that the synthesis of Ni<sub>3</sub>Al–TiC composite under thermal explosion condition from the mixture of nickel, aluminum, and titanium carbide powders satisfactorily took place when the fraction of titanium carbide in the green powder mixture was 15 vol % and less.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"278 - 287"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, Phase Composition, and Hardness of Ni3Al–TiC Composite Fabricated by Thermal Explosion of Nickel, Aluminum, and Titanium Carbide Powder Mixture\",\"authors\":\"K. V. Ivanov, K. O. Akimov, M. G. Figurko\",\"doi\":\"10.3103/S1061386223040052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using scanning electron microscopy, X-ray phase analysis, and hardness measurement we investigated the structure, phase composition, and mechanical properties of Ni<sub>3</sub>Al–TiC composite (TiC content varied in the interval from 0 to 30 vol %) fabricated by self-propagating high-temperature synthesis in the thermal explosion mode from a powder mixture of nickel, aluminum, and titanium carbide. It was found that the synthesis of Ni<sub>3</sub>Al intermetallic compound occurred almost completely when TiC content in the green powder mixture was up to 15 vol %. TiC particles were arranged in clusters and individually. Each particle, including in the clusters, was surrounded with the matrix material. The hardness of the composite essentially increased with an increase in the TiC content in the green powder mixture up to 10 vol %. Then the hardness gain was slow. The matrix of the composite contained Ni<sub>3</sub>Al and NiAl intermetallic phases as well as unreacted nickel when the fraction of TiC in the green powder mixture increased to 30 vol %. TiC particles were adjacent to each other in the clusters and there was a free volume between them. Thus, it was concluded that the synthesis of Ni<sub>3</sub>Al–TiC composite under thermal explosion condition from the mixture of nickel, aluminum, and titanium carbide powders satisfactorily took place when the fraction of titanium carbide in the green powder mixture was 15 vol % and less.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 4\",\"pages\":\"278 - 287\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223040052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223040052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure, Phase Composition, and Hardness of Ni3Al–TiC Composite Fabricated by Thermal Explosion of Nickel, Aluminum, and Titanium Carbide Powder Mixture
Using scanning electron microscopy, X-ray phase analysis, and hardness measurement we investigated the structure, phase composition, and mechanical properties of Ni3Al–TiC composite (TiC content varied in the interval from 0 to 30 vol %) fabricated by self-propagating high-temperature synthesis in the thermal explosion mode from a powder mixture of nickel, aluminum, and titanium carbide. It was found that the synthesis of Ni3Al intermetallic compound occurred almost completely when TiC content in the green powder mixture was up to 15 vol %. TiC particles were arranged in clusters and individually. Each particle, including in the clusters, was surrounded with the matrix material. The hardness of the composite essentially increased with an increase in the TiC content in the green powder mixture up to 10 vol %. Then the hardness gain was slow. The matrix of the composite contained Ni3Al and NiAl intermetallic phases as well as unreacted nickel when the fraction of TiC in the green powder mixture increased to 30 vol %. TiC particles were adjacent to each other in the clusters and there was a free volume between them. Thus, it was concluded that the synthesis of Ni3Al–TiC composite under thermal explosion condition from the mixture of nickel, aluminum, and titanium carbide powders satisfactorily took place when the fraction of titanium carbide in the green powder mixture was 15 vol % and less.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.