揭示麻疹传播动态:非线性发病率随机模型的启示

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-18 DOI:10.1111/sapm.12670
Zhenfeng Shi, Daqing Jiang
{"title":"揭示麻疹传播动态:非线性发病率随机模型的启示","authors":"Zhenfeng Shi,&nbsp;Daqing Jiang","doi":"10.1111/sapm.12670","DOIUrl":null,"url":null,"abstract":"<p>In this paper, taking into account the inevitable impact of environmental perturbations on disease transmission, we primarily investigate a stochastic model for measles infection with nonlinear incidence. The transmission rate in this model follows a logarithmic normal distribution influenced by an Ornstein–Uhlenbeck (OU) process. To analyze the dynamic properties of the stochastic model, our first step is to establish the existence and uniqueness of a global solution for the stochastic equations. Next, by constructing appropriate Lyapunov functions and utilizing the ergodicity of the OU process, we establish sufficient conditions for the existence of a stationary distribution, indicating the prevalence of the disease. Furthermore, we provide sufficient conditions for disease elimination. These conditions are derived by considering the interplay between the model parameters and the stochastic dynamics. Finally, we validate the theoretical conclusions through numerical simulations, which allow us to assess the practical implications of the established conditions and observe the dynamics of the stochastic model in action. By combining theoretical analysis and numerical simulations, we gain a comprehensive understanding of the stochastic model's behavior, contributing to the broader understanding of measles transmission dynamics and the development of effective control strategies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling measles transmission dynamics: Insights from a stochastic model with nonlinear incidence\",\"authors\":\"Zhenfeng Shi,&nbsp;Daqing Jiang\",\"doi\":\"10.1111/sapm.12670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, taking into account the inevitable impact of environmental perturbations on disease transmission, we primarily investigate a stochastic model for measles infection with nonlinear incidence. The transmission rate in this model follows a logarithmic normal distribution influenced by an Ornstein–Uhlenbeck (OU) process. To analyze the dynamic properties of the stochastic model, our first step is to establish the existence and uniqueness of a global solution for the stochastic equations. Next, by constructing appropriate Lyapunov functions and utilizing the ergodicity of the OU process, we establish sufficient conditions for the existence of a stationary distribution, indicating the prevalence of the disease. Furthermore, we provide sufficient conditions for disease elimination. These conditions are derived by considering the interplay between the model parameters and the stochastic dynamics. Finally, we validate the theoretical conclusions through numerical simulations, which allow us to assess the practical implications of the established conditions and observe the dynamics of the stochastic model in action. By combining theoretical analysis and numerical simulations, we gain a comprehensive understanding of the stochastic model's behavior, contributing to the broader understanding of measles transmission dynamics and the development of effective control strategies.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到环境扰动对疾病传播不可避免的影响,本文主要研究一种非线性发病率的麻疹感染随机模型。该模型中的传播率受奥恩斯坦-乌伦贝克(Ornstein-Uhlenbeck,OU)过程的影响,服从对数正态分布。为了分析随机模型的动态特性,我们首先要确定随机方程全局解的存在性和唯一性。接下来,通过构建适当的 Lyapunov 函数并利用 OU 过程的遍历性,我们建立了静态分布存在的充分条件,表明了疾病的流行程度。此外,我们还提供了疾病消除的充分条件。这些条件是通过考虑模型参数和随机动力学之间的相互作用而得出的。最后,我们通过数值模拟验证了理论结论,从而评估了既定条件的实际意义,并观察了随机模型的动态变化。通过将理论分析和数值模拟相结合,我们对随机模型的行为有了全面的了解,有助于更广泛地了解麻疹的传播动态和制定有效的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling measles transmission dynamics: Insights from a stochastic model with nonlinear incidence

In this paper, taking into account the inevitable impact of environmental perturbations on disease transmission, we primarily investigate a stochastic model for measles infection with nonlinear incidence. The transmission rate in this model follows a logarithmic normal distribution influenced by an Ornstein–Uhlenbeck (OU) process. To analyze the dynamic properties of the stochastic model, our first step is to establish the existence and uniqueness of a global solution for the stochastic equations. Next, by constructing appropriate Lyapunov functions and utilizing the ergodicity of the OU process, we establish sufficient conditions for the existence of a stationary distribution, indicating the prevalence of the disease. Furthermore, we provide sufficient conditions for disease elimination. These conditions are derived by considering the interplay between the model parameters and the stochastic dynamics. Finally, we validate the theoretical conclusions through numerical simulations, which allow us to assess the practical implications of the established conditions and observe the dynamics of the stochastic model in action. By combining theoretical analysis and numerical simulations, we gain a comprehensive understanding of the stochastic model's behavior, contributing to the broader understanding of measles transmission dynamics and the development of effective control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1