{"title":"带 TV 惩罚的局部自适应稀疏加性量化回归模型","authors":"Yue Wang , Hongmei Lin , Zengyan Fan , Heng Lian","doi":"10.1016/j.jspi.2024.106144","DOIUrl":null,"url":null,"abstract":"<div><p><span>High-dimensional additive quantile regression<span> model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an </span></span>alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106144"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally adaptive sparse additive quantile regression model with TV penalty\",\"authors\":\"Yue Wang , Hongmei Lin , Zengyan Fan , Heng Lian\",\"doi\":\"10.1016/j.jspi.2024.106144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>High-dimensional additive quantile regression<span> model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an </span></span>alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"232 \",\"pages\":\"Article 106144\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Locally adaptive sparse additive quantile regression model with TV penalty
High-dimensional additive quantile regression model via penalization provides a powerful tool for analyzing complex data in many contemporary applications. Despite the fast developments, how to combine the strengths of additive quantile regression with total variation penalty with theoretical guarantees still remains unexplored. In this paper, we propose a new methodology for sparse additive quantile regression model over bounded variation function classes via the empirical norm penalty and the total variation penalty for local adaptivity. Theoretically, we prove that the proposed method achieves the optimal convergence rate under mild assumptions. Moreover, an alternating direction method of multipliers (ADMM) based algorithm is developed. Both simulation results and real data analysis confirm the effectiveness of our method.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.