Pei Yu, Wei Wei, Jing Li, Qiuyang Du, Fang Wang, Lili Zhang, Huitao Li, Kang Yang, Xudong Yang, Ning Zhang, Yucheng Han, Huapeng Yu
{"title":"Fire-PPYOLOE:用于实时野外林火监测的高效林火探测器","authors":"Pei Yu, Wei Wei, Jing Li, Qiuyang Du, Fang Wang, Lili Zhang, Huitao Li, Kang Yang, Xudong Yang, Ning Zhang, Yucheng Han, Huapeng Yu","doi":"10.1155/2024/2831905","DOIUrl":null,"url":null,"abstract":"Forest fire has the characteristics of sudden and destructive, which threatens safety of people’s life and property. Automatic detection and early warning of forest fire in the early stage is very important for protecting forest resources and reducing disaster losses. Unmanned forest fire monitoring is one popular way of forest fire automatic detection. However, the actual forest environment is complex and diverse, and the vision image is affected by various factors easily such as geographical location, seasons, cloudy weather, day and night, etc. In this paper, we propose a novel fire detection method called Fire-PPYOLOE. We design a new backbone and neck structure leveraging large kernel convolution to capture a large arrange area of reception field based on the existing fast and accurate object detection model PP-YOLOE. In addition, our model maintains the high-speed performance of the single-stage detection model and reduces model parameters by using CSPNet significantly. Extensive experiments are conducted to show the effectiveness of Fire-PPYOLOE from the views of detection accuracy and speed. The results show that our Fire-PPYOLOE is able to detect the smoke- and flame-like objects because it can learn features around the object to be detected. It can provide real-time forest fire prevention and early detection.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"41 5 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire-PPYOLOE: An Efficient Forest Fire Detector for Real-Time Wild Forest Fire Monitoring\",\"authors\":\"Pei Yu, Wei Wei, Jing Li, Qiuyang Du, Fang Wang, Lili Zhang, Huitao Li, Kang Yang, Xudong Yang, Ning Zhang, Yucheng Han, Huapeng Yu\",\"doi\":\"10.1155/2024/2831905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fire has the characteristics of sudden and destructive, which threatens safety of people’s life and property. Automatic detection and early warning of forest fire in the early stage is very important for protecting forest resources and reducing disaster losses. Unmanned forest fire monitoring is one popular way of forest fire automatic detection. However, the actual forest environment is complex and diverse, and the vision image is affected by various factors easily such as geographical location, seasons, cloudy weather, day and night, etc. In this paper, we propose a novel fire detection method called Fire-PPYOLOE. We design a new backbone and neck structure leveraging large kernel convolution to capture a large arrange area of reception field based on the existing fast and accurate object detection model PP-YOLOE. In addition, our model maintains the high-speed performance of the single-stage detection model and reduces model parameters by using CSPNet significantly. Extensive experiments are conducted to show the effectiveness of Fire-PPYOLOE from the views of detection accuracy and speed. The results show that our Fire-PPYOLOE is able to detect the smoke- and flame-like objects because it can learn features around the object to be detected. It can provide real-time forest fire prevention and early detection.\",\"PeriodicalId\":48792,\"journal\":{\"name\":\"Journal of Sensors\",\"volume\":\"41 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2831905\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2831905","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fire-PPYOLOE: An Efficient Forest Fire Detector for Real-Time Wild Forest Fire Monitoring
Forest fire has the characteristics of sudden and destructive, which threatens safety of people’s life and property. Automatic detection and early warning of forest fire in the early stage is very important for protecting forest resources and reducing disaster losses. Unmanned forest fire monitoring is one popular way of forest fire automatic detection. However, the actual forest environment is complex and diverse, and the vision image is affected by various factors easily such as geographical location, seasons, cloudy weather, day and night, etc. In this paper, we propose a novel fire detection method called Fire-PPYOLOE. We design a new backbone and neck structure leveraging large kernel convolution to capture a large arrange area of reception field based on the existing fast and accurate object detection model PP-YOLOE. In addition, our model maintains the high-speed performance of the single-stage detection model and reduces model parameters by using CSPNet significantly. Extensive experiments are conducted to show the effectiveness of Fire-PPYOLOE from the views of detection accuracy and speed. The results show that our Fire-PPYOLOE is able to detect the smoke- and flame-like objects because it can learn features around the object to be detected. It can provide real-time forest fire prevention and early detection.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.