Dylan Spicker, Erica E. M. Moodie, Susan M. Shortreed
{"title":"最优动态治疗制度估算的差异化私人结果加权学习","authors":"Dylan Spicker, Erica E. M. Moodie, Susan M. Shortreed","doi":"10.1002/sta4.641","DOIUrl":null,"url":null,"abstract":"Precision medicine is a framework for developing evidence-based medical recommendations that seeks to determine the optimal sequence of treatments, tailored to all of the relevant, observable patient-level characteristics. Because precision medicine relies on highly sensitive, patient-level data, ensuring the privacy of participants is of great importance. Dynamic treatment regimes (DTRs) provide one formalization of precision medicine in a longitudinal setting. Outcome-weighted learning (OWL) is a family of techniques for estimating optimal DTRs based on observational data. OWL techniques leverage support vector machine (SVM) classifiers in order to perform estimation. SVMs perform classification based on a set of influential points in the data known as support vectors. The classification rule produced by SVMs often requires direct access to the support vectors. Thus, releasing a treatment policy estimated with OWL requires the release of patient data for a subset of patients in the sample. As a result, the classification rules from SVMs constitute a severe privacy violation for those individuals whose data comprise the support vectors. This privacy violation is a major concern, particularly in light of the potentially highly sensitive medical data that are used in DTR estimation. Differential privacy has emerged as a mathematical framework for ensuring the privacy of individual-level data, with provable guarantees on the likelihood that individual characteristics can be determined by an adversary. We provide the first investigation of differential privacy in the context of DTRs and provide a differentially private OWL estimator, with theoretical results allowing us to quantify the cost of privacy in terms of the accuracy of the private estimators.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially private outcome-weighted learning for optimal dynamic treatment regime estimation\",\"authors\":\"Dylan Spicker, Erica E. M. Moodie, Susan M. Shortreed\",\"doi\":\"10.1002/sta4.641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision medicine is a framework for developing evidence-based medical recommendations that seeks to determine the optimal sequence of treatments, tailored to all of the relevant, observable patient-level characteristics. Because precision medicine relies on highly sensitive, patient-level data, ensuring the privacy of participants is of great importance. Dynamic treatment regimes (DTRs) provide one formalization of precision medicine in a longitudinal setting. Outcome-weighted learning (OWL) is a family of techniques for estimating optimal DTRs based on observational data. OWL techniques leverage support vector machine (SVM) classifiers in order to perform estimation. SVMs perform classification based on a set of influential points in the data known as support vectors. The classification rule produced by SVMs often requires direct access to the support vectors. Thus, releasing a treatment policy estimated with OWL requires the release of patient data for a subset of patients in the sample. As a result, the classification rules from SVMs constitute a severe privacy violation for those individuals whose data comprise the support vectors. This privacy violation is a major concern, particularly in light of the potentially highly sensitive medical data that are used in DTR estimation. Differential privacy has emerged as a mathematical framework for ensuring the privacy of individual-level data, with provable guarantees on the likelihood that individual characteristics can be determined by an adversary. We provide the first investigation of differential privacy in the context of DTRs and provide a differentially private OWL estimator, with theoretical results allowing us to quantify the cost of privacy in terms of the accuracy of the private estimators.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.641\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.641","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Differentially private outcome-weighted learning for optimal dynamic treatment regime estimation
Precision medicine is a framework for developing evidence-based medical recommendations that seeks to determine the optimal sequence of treatments, tailored to all of the relevant, observable patient-level characteristics. Because precision medicine relies on highly sensitive, patient-level data, ensuring the privacy of participants is of great importance. Dynamic treatment regimes (DTRs) provide one formalization of precision medicine in a longitudinal setting. Outcome-weighted learning (OWL) is a family of techniques for estimating optimal DTRs based on observational data. OWL techniques leverage support vector machine (SVM) classifiers in order to perform estimation. SVMs perform classification based on a set of influential points in the data known as support vectors. The classification rule produced by SVMs often requires direct access to the support vectors. Thus, releasing a treatment policy estimated with OWL requires the release of patient data for a subset of patients in the sample. As a result, the classification rules from SVMs constitute a severe privacy violation for those individuals whose data comprise the support vectors. This privacy violation is a major concern, particularly in light of the potentially highly sensitive medical data that are used in DTR estimation. Differential privacy has emerged as a mathematical framework for ensuring the privacy of individual-level data, with provable guarantees on the likelihood that individual characteristics can be determined by an adversary. We provide the first investigation of differential privacy in the context of DTRs and provide a differentially private OWL estimator, with theoretical results allowing us to quantify the cost of privacy in terms of the accuracy of the private estimators.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.