Zhenpeng Shi, Nikolay Matyunin, Kalman Graffi, David Starobinski
{"title":"利用威胁知识图谱揭示 CWE-CVE-CPE 关系","authors":"Zhenpeng Shi, Nikolay Matyunin, Kalman Graffi, David Starobinski","doi":"10.1145/3641819","DOIUrl":null,"url":null,"abstract":"<p>Security assessment relies on public information about products, vulnerabilities, and weaknesses. So far, databases in these categories have rarely been analyzed in combination. Yet, doing so could help predict unreported vulnerabilities and identify common threat patterns. In this paper, we propose a methodology for producing and optimizing a knowledge graph that aggregates knowledge from common threat databases (CVE, CWE, and CPE). We apply the threat knowledge graph to predict associations between threat databases, specifically between products, vulnerabilities, and weaknesses. We evaluate the prediction performance both in closed world with associations from the knowledge graph, and in open world with associations revealed afterward. Using rank-based metrics (i.e., Mean Rank, Mean Reciprocal Rank, and Hits@N scores), we demonstrate the ability of the threat knowledge graph to uncover many associations that are currently unknown but will be revealed in the future, which remains useful over different time periods. We propose approaches to optimize the knowledge graph, and show that they indeed help in further uncovering associations. We have made the artifacts of our work publicly available.</p>","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering CWE-CVE-CPE Relations with Threat Knowledge Graphs\",\"authors\":\"Zhenpeng Shi, Nikolay Matyunin, Kalman Graffi, David Starobinski\",\"doi\":\"10.1145/3641819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Security assessment relies on public information about products, vulnerabilities, and weaknesses. So far, databases in these categories have rarely been analyzed in combination. Yet, doing so could help predict unreported vulnerabilities and identify common threat patterns. In this paper, we propose a methodology for producing and optimizing a knowledge graph that aggregates knowledge from common threat databases (CVE, CWE, and CPE). We apply the threat knowledge graph to predict associations between threat databases, specifically between products, vulnerabilities, and weaknesses. We evaluate the prediction performance both in closed world with associations from the knowledge graph, and in open world with associations revealed afterward. Using rank-based metrics (i.e., Mean Rank, Mean Reciprocal Rank, and Hits@N scores), we demonstrate the ability of the threat knowledge graph to uncover many associations that are currently unknown but will be revealed in the future, which remains useful over different time periods. We propose approaches to optimize the knowledge graph, and show that they indeed help in further uncovering associations. We have made the artifacts of our work publicly available.</p>\",\"PeriodicalId\":56050,\"journal\":{\"name\":\"ACM Transactions on Privacy and Security\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Privacy and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641819\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641819","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Uncovering CWE-CVE-CPE Relations with Threat Knowledge Graphs
Security assessment relies on public information about products, vulnerabilities, and weaknesses. So far, databases in these categories have rarely been analyzed in combination. Yet, doing so could help predict unreported vulnerabilities and identify common threat patterns. In this paper, we propose a methodology for producing and optimizing a knowledge graph that aggregates knowledge from common threat databases (CVE, CWE, and CPE). We apply the threat knowledge graph to predict associations between threat databases, specifically between products, vulnerabilities, and weaknesses. We evaluate the prediction performance both in closed world with associations from the knowledge graph, and in open world with associations revealed afterward. Using rank-based metrics (i.e., Mean Rank, Mean Reciprocal Rank, and Hits@N scores), we demonstrate the ability of the threat knowledge graph to uncover many associations that are currently unknown but will be revealed in the future, which remains useful over different time periods. We propose approaches to optimize the knowledge graph, and show that they indeed help in further uncovering associations. We have made the artifacts of our work publicly available.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.