触感纹理回放的逼真性:拉伸与振动的结合

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-01-19 DOI:10.1109/TOH.2024.3355982
Zhenyu Liu;Jin-Tae Kim;John A. Rogers;Roberta L. Klatzky;J. Edward Colgate
{"title":"触感纹理回放的逼真性:拉伸与振动的结合","authors":"Zhenyu Liu;Jin-Tae Kim;John A. Rogers;Roberta L. Klatzky;J. Edward Colgate","doi":"10.1109/TOH.2024.3355982","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of two stimulation modalities (stretch and vibration) on natural touch sensation on the volar forearm. The skin-textile interaction was implemented by scanning three textures across the left forearm. The resulting skin displacements were recorded by the digital image correlation technique to capture the information imparted by the textures. The texture recordings were used to create three playback modes (stretch, vibration, and both), which were reproduced on the right forearm. Two psychophysical experiments compared the texture scans to rendered texture playbacks. The first experiment used a matching task and found that to maximize perceptual realism, i.e., similarity to a physical reference, subjects preferred the rendered texture to have a playback intensity of 1X – 2X higher on DC components (stretch), and 1X – 3.5X higher on AC components (vibration), varying across textures. The second experiment elicited similarity ratings between the texture scans and playbacks and showed that a combination of stretch and vibration was required to create differentiated texture sensations. However, the intensity amplification and use of two stimuli were still insufficient to create fully realistic texture sensations. We conclude that mechanisms beyond single-site uniaxial stimuli are needed to reproduce realistic textural sensations.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"441-450"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realism of Tactile Texture Playback: A Combination of Stretch and Vibration\",\"authors\":\"Zhenyu Liu;Jin-Tae Kim;John A. Rogers;Roberta L. Klatzky;J. Edward Colgate\",\"doi\":\"10.1109/TOH.2024.3355982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effects of two stimulation modalities (stretch and vibration) on natural touch sensation on the volar forearm. The skin-textile interaction was implemented by scanning three textures across the left forearm. The resulting skin displacements were recorded by the digital image correlation technique to capture the information imparted by the textures. The texture recordings were used to create three playback modes (stretch, vibration, and both), which were reproduced on the right forearm. Two psychophysical experiments compared the texture scans to rendered texture playbacks. The first experiment used a matching task and found that to maximize perceptual realism, i.e., similarity to a physical reference, subjects preferred the rendered texture to have a playback intensity of 1X – 2X higher on DC components (stretch), and 1X – 3.5X higher on AC components (vibration), varying across textures. The second experiment elicited similarity ratings between the texture scans and playbacks and showed that a combination of stretch and vibration was required to create differentiated texture sensations. However, the intensity amplification and use of two stimuli were still insufficient to create fully realistic texture sensations. We conclude that mechanisms beyond single-site uniaxial stimuli are needed to reproduce realistic textural sensations.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"17 3\",\"pages\":\"441-450\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10409274/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10409274/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了两种刺激模式(拉伸和振动)对前臂外侧自然触觉的影响。通过扫描左前臂上的三种纹理来实现皮肤与织物之间的互动。通过数字图像相关技术记录由此产生的皮肤位移,以捕捉纹理传递的信息。纹理记录用于创建三种播放模式(拉伸、振动和两种模式),并在右前臂上重现。两项心理物理实验将纹理扫描与渲染纹理回放进行了比较。第一个实验使用了匹配任务,结果发现,为了最大限度地提高感知真实度,即与物理参照物的相似度,受试者更喜欢渲染纹理的回放强度在直流成分(拉伸)上高 1 倍至 2 倍,在交流成分(振动)上高 1 倍至 3.5 倍,不同纹理的回放强度各不相同。第二项实验对纹理扫描和重放之间的相似度进行了评分,结果表明,拉伸和振动相结合才能产生不同的纹理感觉。然而,强度放大和使用两种刺激仍不足以产生完全逼真的纹理感觉。我们的结论是,要再现逼真的纹理感觉,除了单点单轴刺激外,还需要其他机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realism of Tactile Texture Playback: A Combination of Stretch and Vibration
This study investigates the effects of two stimulation modalities (stretch and vibration) on natural touch sensation on the volar forearm. The skin-textile interaction was implemented by scanning three textures across the left forearm. The resulting skin displacements were recorded by the digital image correlation technique to capture the information imparted by the textures. The texture recordings were used to create three playback modes (stretch, vibration, and both), which were reproduced on the right forearm. Two psychophysical experiments compared the texture scans to rendered texture playbacks. The first experiment used a matching task and found that to maximize perceptual realism, i.e., similarity to a physical reference, subjects preferred the rendered texture to have a playback intensity of 1X – 2X higher on DC components (stretch), and 1X – 3.5X higher on AC components (vibration), varying across textures. The second experiment elicited similarity ratings between the texture scans and playbacks and showed that a combination of stretch and vibration was required to create differentiated texture sensations. However, the intensity amplification and use of two stimuli were still insufficient to create fully realistic texture sensations. We conclude that mechanisms beyond single-site uniaxial stimuli are needed to reproduce realistic textural sensations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
A Novel Ungrounded Haptic Device for Generation and Orientation of Force and Torque Feedbacks. HM-Array: A Novel Haptic Magnetism-based Leader-follower Platform for Minimally Invasive Robotic Surgery. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion. A Visuo-Haptic System for Nodule Detection Training: Insights from EEG and behavioral analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1