利用多池化-PCA 过程的 CNN 模块识别比例变化的车辆目标

Yuxiang Guo;Itsuo Kumazawa;Chuyo Kaku
{"title":"利用多池化-PCA 过程的 CNN 模块识别比例变化的车辆目标","authors":"Yuxiang Guo;Itsuo Kumazawa;Chuyo Kaku","doi":"10.26599/JICV.2023.9210017","DOIUrl":null,"url":null,"abstract":"The moving vehicles present different scales in the image due to the perspective effect of different viewpoint distances. The premise of advanced driver assistance system (ADAS) system for safety surveillance and safe driving is early identification of vehicle targets in front of the ego vehicle. The recognition of the same vehicle at different scales requires feature learning with scale invariance. Unlike existing feature vector methods, the normalized PCA eigenvalues calculated from feature maps are used to extract scale-invariant features. This study proposed a convolutional neural network (CNN) structure embedded with the module of multi-pooling-PCA for scale variant object recognition. The validation of the proposed network structure is verified by scale variant vehicle image dataset. Compared with scale invariant network algorithms of Scale-invariant feature transform (SIFT) and FSAF as well as miscellaneous networks, the proposed network can achieve the best recognition accuracy tested by the vehicle scale variant dataset. To testify the practicality of this modified network, the testing of public dataset ImageNet is done and the comparable results proved its effectiveness in general purpose of applications.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"6 4","pages":"227-236"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10409228","citationCount":"0","resultStr":"{\"title\":\"Scale Variant Vehicle Object Recognition by CNN Module of Multi-Pooling-PCA Process\",\"authors\":\"Yuxiang Guo;Itsuo Kumazawa;Chuyo Kaku\",\"doi\":\"10.26599/JICV.2023.9210017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The moving vehicles present different scales in the image due to the perspective effect of different viewpoint distances. The premise of advanced driver assistance system (ADAS) system for safety surveillance and safe driving is early identification of vehicle targets in front of the ego vehicle. The recognition of the same vehicle at different scales requires feature learning with scale invariance. Unlike existing feature vector methods, the normalized PCA eigenvalues calculated from feature maps are used to extract scale-invariant features. This study proposed a convolutional neural network (CNN) structure embedded with the module of multi-pooling-PCA for scale variant object recognition. The validation of the proposed network structure is verified by scale variant vehicle image dataset. Compared with scale invariant network algorithms of Scale-invariant feature transform (SIFT) and FSAF as well as miscellaneous networks, the proposed network can achieve the best recognition accuracy tested by the vehicle scale variant dataset. To testify the practicality of this modified network, the testing of public dataset ImageNet is done and the comparable results proved its effectiveness in general purpose of applications.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"6 4\",\"pages\":\"227-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10409228\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10409228/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10409228/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于不同视角距离的透视效应,移动中的车辆在图像中呈现出不同的比例。高级驾驶员辅助系统(ADAS)系统用于安全监控和安全驾驶的前提是及早识别自我车辆前方的车辆目标。要在不同尺度上识别同一车辆,需要进行具有尺度不变性的特征学习。与现有的特征向量方法不同,利用特征图计算出的归一化 PCA 特征值来提取尺度不变的特征。本研究提出了一种嵌入多池化 PCA 模块的卷积神经网络(CNN)结构,用于识别尺度变化的物体。通过尺度变化车辆图像数据集验证了所提出的网络结构。与尺度不变特征变换(SIFT)和 FSAF 等尺度不变网络算法以及其他网络算法相比,所提出的网络在车辆尺度变化数据集的测试中达到了最佳识别精度。为了证明改进后的网络的实用性,对公共数据集 ImageNet 进行了测试,结果证明其在一般应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale Variant Vehicle Object Recognition by CNN Module of Multi-Pooling-PCA Process
The moving vehicles present different scales in the image due to the perspective effect of different viewpoint distances. The premise of advanced driver assistance system (ADAS) system for safety surveillance and safe driving is early identification of vehicle targets in front of the ego vehicle. The recognition of the same vehicle at different scales requires feature learning with scale invariance. Unlike existing feature vector methods, the normalized PCA eigenvalues calculated from feature maps are used to extract scale-invariant features. This study proposed a convolutional neural network (CNN) structure embedded with the module of multi-pooling-PCA for scale variant object recognition. The validation of the proposed network structure is verified by scale variant vehicle image dataset. Compared with scale invariant network algorithms of Scale-invariant feature transform (SIFT) and FSAF as well as miscellaneous networks, the proposed network can achieve the best recognition accuracy tested by the vehicle scale variant dataset. To testify the practicality of this modified network, the testing of public dataset ImageNet is done and the comparable results proved its effectiveness in general purpose of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Advancements and Prospects in Multisensor Fusion for Autonomous Driving Extracting Networkwide Road Segment Location, Direction, and Turning Movement Rules From Global Positioning System Vehicle Trajectory Data for Macrosimulation Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1