基于时间序列和支持向量机的光伏阵列故障诊断

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Photoenergy Pub Date : 2024-01-20 DOI:10.1155/2024/2885545
Ying Zhong, Bo Zhang, Xu Ji, Jieping Wu
{"title":"基于时间序列和支持向量机的光伏阵列故障诊断","authors":"Ying Zhong, Bo Zhang, Xu Ji, Jieping Wu","doi":"10.1155/2024/2885545","DOIUrl":null,"url":null,"abstract":"This paper proposes a diagnosis method based on time series and support vector machine (SVM) to improve the timeliness, accuracy, and feasibility of fault diagnosis for photovoltaic (PV) arrays. It obtains the nominal output power of the PV array based on real-time collected data such as voltage, current, radiation, and temperature and normalizes the power values at different time points throughout the day to form a time series. Using the time series values as input data for a “one-to-one” multiclass classifier, we can identify and classify typical operational faults such as random shading, fixed shading, and aging degradation of PV arrays. The developed algorithmic model is trained and tested for different fault conditions using the data sets generated by the PV array simulation device. The experimental results show that our model has fairly good reliability and accuracy, and to some extent, it solves the problem of classifying shading and aging faults, two of which exhibit rather similar degradation characteristics.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of PV Array Based on Time Series and Support Vector Machine\",\"authors\":\"Ying Zhong, Bo Zhang, Xu Ji, Jieping Wu\",\"doi\":\"10.1155/2024/2885545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a diagnosis method based on time series and support vector machine (SVM) to improve the timeliness, accuracy, and feasibility of fault diagnosis for photovoltaic (PV) arrays. It obtains the nominal output power of the PV array based on real-time collected data such as voltage, current, radiation, and temperature and normalizes the power values at different time points throughout the day to form a time series. Using the time series values as input data for a “one-to-one” multiclass classifier, we can identify and classify typical operational faults such as random shading, fixed shading, and aging degradation of PV arrays. The developed algorithmic model is trained and tested for different fault conditions using the data sets generated by the PV array simulation device. The experimental results show that our model has fairly good reliability and accuracy, and to some extent, it solves the problem of classifying shading and aging faults, two of which exhibit rather similar degradation characteristics.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2885545\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2885545","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于时间序列和支持向量机(SVM)的诊断方法,以提高光伏(PV)阵列故障诊断的及时性、准确性和可行性。它根据实时采集的电压、电流、辐射和温度等数据,获取光伏阵列的额定输出功率,并将全天不同时间点的功率值归一化,形成时间序列。利用时间序列值作为 "一对一 "多类分类器的输入数据,我们可以识别和分类典型的运行故障,如随机遮光、固定遮光和光伏阵列老化退化。利用光伏阵列模拟装置生成的数据集,针对不同的故障条件对所开发的算法模型进行了训练和测试。实验结果表明,我们的模型具有相当好的可靠性和准确性,并在一定程度上解决了遮阳和老化故障的分类问题,这两种故障表现出相当相似的退化特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Diagnosis of PV Array Based on Time Series and Support Vector Machine
This paper proposes a diagnosis method based on time series and support vector machine (SVM) to improve the timeliness, accuracy, and feasibility of fault diagnosis for photovoltaic (PV) arrays. It obtains the nominal output power of the PV array based on real-time collected data such as voltage, current, radiation, and temperature and normalizes the power values at different time points throughout the day to form a time series. Using the time series values as input data for a “one-to-one” multiclass classifier, we can identify and classify typical operational faults such as random shading, fixed shading, and aging degradation of PV arrays. The developed algorithmic model is trained and tested for different fault conditions using the data sets generated by the PV array simulation device. The experimental results show that our model has fairly good reliability and accuracy, and to some extent, it solves the problem of classifying shading and aging faults, two of which exhibit rather similar degradation characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
期刊最新文献
In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. IGWO-VINC Algorithm Applied to MPPT Strategy for PV System Enhancing CsSn0.5Ge0.5I3 Perovskite Solar Cell Performance via Cu2O Hole Transport Layer Integration Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software Maximizing Conversion Efficiency: A Numerical Analysis on P+ a-SiC/i Interface/n-Si Heterojunction Solar Cells with AMPS-1D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1