2-乙基-1-己醇和 1,2-二取代乙烷的二元混合物:热物理、超声学和计算研究

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Journal of Solution Chemistry Pub Date : 2024-01-19 DOI:10.1007/s10953-023-01360-6
Rajendra Pradhan, Dhruba Jyoti Roy, Soumik Das, Sudarshan Pradhan, Anmol Chettri, Biswajit Sinha
{"title":"2-乙基-1-己醇和 1,2-二取代乙烷的二元混合物:热物理、超声学和计算研究","authors":"Rajendra Pradhan, Dhruba Jyoti Roy, Soumik Das, Sudarshan Pradhan, Anmol Chettri, Biswajit Sinha","doi":"10.1007/s10953-023-01360-6","DOIUrl":null,"url":null,"abstract":"<p>Densities (<span>\\(\\rho\\)</span>) and viscosities (<span>\\(\\eta\\)</span>) of the binary mixtures of 2-ethyl-1-hexanol (2-EH) with ethylenediamine, 1,2-dichloroethane (DCE) and monoethanolamine (MEA) were measured at <i>T</i> = (298.15–318.15) K under atmospheric pressure over the entire composition range (<span>\\(x_{{1}} = 0 - 1.0\\)</span>). For these binary mixtures ultrasonic speeds (<span>\\(u\\)</span>) and refractive indices (<span>\\(n_{{\\text{D}}}\\)</span>) were also measured at 298.15 K. With these experimental data the excess molar volumes (<span>\\(V_{{\\text{m}}}^{{\\text{E}}}\\)</span>), viscosity deviations (<span>\\(\\Delta \\eta\\)</span>), excess molar refractions (<span>\\(R_{{\\text{m}}}^{{\\text{E}}}\\)</span>), excess isentropic compressibility (<span>\\(\\kappa_{{\\text{S}}}^{{\\text{E}}}\\)</span>) and other derived properties were determined at various experimental temperatures. Such thermophysical properties were discussed in terms of molecular interactions and structural effects well corroborated with IR spectra of the mixtures. Excess molar volumes (<span>\\(V_{{\\text{m}}}^{{\\text{E}}}\\)</span>) of the binary mixtures were used to derive partial molar volumes (<span>\\(\\overline{V}_{{\\text{m,1}}}^{{0}}\\)</span> and <span>\\(\\overline{V}_{{{\\text{m,}}\\,{\\kern 1pt} {2}}}^{{0}}\\)</span>) and excess partial molar volumes (<span>\\(\\overline{V}_{{\\text{m,1}}}^{{\\text{0,E}}}\\)</span> and <span>\\(\\overline{V}_{{\\text{m,2}}}^{{\\text{0,E}}}\\)</span>) at infinite dilution to reveal the volume changes of the binary mixtures. Prigogine-Flory-Paterson theory (PFP), Peng-Robinson Equation of States (PR-EOS) and Bloomfield-Dewan (BF-D) model were used to predict excess molar volumes (<span>\\(V_{{\\text{m}}}^{{\\text{E}}}\\)</span>) and viscosities (<span>\\(\\eta\\)</span>) of the mixtures. Ultrasonic speeds (<span>\\(u\\)</span>) of the binary mixtures predicted using empirical or semi-empirical theories like free length theory, Impedance dependence relation, Ideal mixture relation, Junjie’s relation, collision factor theory and Nomoto’s relation, etc. Computational studies have also been performed to establish the degree and nature of solvent–solvent interactions theoretically.</p>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Mixtures of 2-Ethyl-1-hexanol and 1, 2-Disubstituted Ethanes: Thermophysical, Ultraacoustic and Computational Studies\",\"authors\":\"Rajendra Pradhan, Dhruba Jyoti Roy, Soumik Das, Sudarshan Pradhan, Anmol Chettri, Biswajit Sinha\",\"doi\":\"10.1007/s10953-023-01360-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Densities (<span>\\\\(\\\\rho\\\\)</span>) and viscosities (<span>\\\\(\\\\eta\\\\)</span>) of the binary mixtures of 2-ethyl-1-hexanol (2-EH) with ethylenediamine, 1,2-dichloroethane (DCE) and monoethanolamine (MEA) were measured at <i>T</i> = (298.15–318.15) K under atmospheric pressure over the entire composition range (<span>\\\\(x_{{1}} = 0 - 1.0\\\\)</span>). For these binary mixtures ultrasonic speeds (<span>\\\\(u\\\\)</span>) and refractive indices (<span>\\\\(n_{{\\\\text{D}}}\\\\)</span>) were also measured at 298.15 K. With these experimental data the excess molar volumes (<span>\\\\(V_{{\\\\text{m}}}^{{\\\\text{E}}}\\\\)</span>), viscosity deviations (<span>\\\\(\\\\Delta \\\\eta\\\\)</span>), excess molar refractions (<span>\\\\(R_{{\\\\text{m}}}^{{\\\\text{E}}}\\\\)</span>), excess isentropic compressibility (<span>\\\\(\\\\kappa_{{\\\\text{S}}}^{{\\\\text{E}}}\\\\)</span>) and other derived properties were determined at various experimental temperatures. Such thermophysical properties were discussed in terms of molecular interactions and structural effects well corroborated with IR spectra of the mixtures. Excess molar volumes (<span>\\\\(V_{{\\\\text{m}}}^{{\\\\text{E}}}\\\\)</span>) of the binary mixtures were used to derive partial molar volumes (<span>\\\\(\\\\overline{V}_{{\\\\text{m,1}}}^{{0}}\\\\)</span> and <span>\\\\(\\\\overline{V}_{{{\\\\text{m,}}\\\\,{\\\\kern 1pt} {2}}}^{{0}}\\\\)</span>) and excess partial molar volumes (<span>\\\\(\\\\overline{V}_{{\\\\text{m,1}}}^{{\\\\text{0,E}}}\\\\)</span> and <span>\\\\(\\\\overline{V}_{{\\\\text{m,2}}}^{{\\\\text{0,E}}}\\\\)</span>) at infinite dilution to reveal the volume changes of the binary mixtures. Prigogine-Flory-Paterson theory (PFP), Peng-Robinson Equation of States (PR-EOS) and Bloomfield-Dewan (BF-D) model were used to predict excess molar volumes (<span>\\\\(V_{{\\\\text{m}}}^{{\\\\text{E}}}\\\\)</span>) and viscosities (<span>\\\\(\\\\eta\\\\)</span>) of the mixtures. Ultrasonic speeds (<span>\\\\(u\\\\)</span>) of the binary mixtures predicted using empirical or semi-empirical theories like free length theory, Impedance dependence relation, Ideal mixture relation, Junjie’s relation, collision factor theory and Nomoto’s relation, etc. Computational studies have also been performed to establish the degree and nature of solvent–solvent interactions theoretically.</p>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10953-023-01360-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10953-023-01360-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在整个成分范围内(\(x_{{1}} = 0 - 1.0\),在常压下于 T = (298.15-318.15) K 测得了 2-乙基-1-己醇(2-EH)与乙二胺、1,2-二氯乙烷(DCE)和单乙醇胺(MEA)的二元混合物的密度(\(\rho\))和粘度(\(\eeta\))。这些二元混合物的超声波速度(\(u\))和折射率(\(n_{text{D}}\))也是在 298.15 K 时测量的。利用这些实验数据可以得到过量摩尔体积(\(V_{\text{m}}^{\text{E}}}\)、粘度偏差(\(\Delta \eta\) )、过量摩尔折射率(\(R_{\text{m}}^{\text{E}}}\)、过量等熵可压缩性(\(\kappa_{\text{S}}}^{\text{E}}}\))以及其他衍生性质都是在不同实验温度下测定的。这些热物理性质是通过分子相互作用和结构效应来讨论的,并与混合物的红外光谱得到了很好的印证。二元混合物的过量摩尔体积(\(V_{\text{m}}}^{\text{E}}}\)被用来推导部分摩尔体积(\(\overline{V}_{\text{m,1}}}^{{0}}\)和\(\overline{V}_{{\text{m,}}\、和(\overline{V}_{{text{m,}1}}^{{text{0,E}}}\(\overline{V}_{{text{m,}2}}}^{{text{0,E}}}\))和过量部分摩尔体积(\(\overline{V}_{{text{m,}1}}^{{text{0,E}}\))在无限稀释时的体积变化,以揭示二元混合物的体积变化。Prigogine-Flory-Paterson 理论(PFP)、Peng-Robinson 状态方程(PR-EOS)和 Bloomfield-Dewan 模型(BF-D)被用来预测混合物的过量摩尔体积(\(V_{\text{m}}^{\text{E}}})和粘度(\(\eta\))。二元混合物的超声波速度(\(u\))是用经验或半经验理论预测的,如自由长度理论、阻抗依赖关系、理想混合物关系、俊杰关系、碰撞因子理论和野本关系等。此外,还进行了计算研究,从理论上确定溶剂-溶剂相互作用的程度和性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binary Mixtures of 2-Ethyl-1-hexanol and 1, 2-Disubstituted Ethanes: Thermophysical, Ultraacoustic and Computational Studies

Densities (\(\rho\)) and viscosities (\(\eta\)) of the binary mixtures of 2-ethyl-1-hexanol (2-EH) with ethylenediamine, 1,2-dichloroethane (DCE) and monoethanolamine (MEA) were measured at T = (298.15–318.15) K under atmospheric pressure over the entire composition range (\(x_{{1}} = 0 - 1.0\)). For these binary mixtures ultrasonic speeds (\(u\)) and refractive indices (\(n_{{\text{D}}}\)) were also measured at 298.15 K. With these experimental data the excess molar volumes (\(V_{{\text{m}}}^{{\text{E}}}\)), viscosity deviations (\(\Delta \eta\)), excess molar refractions (\(R_{{\text{m}}}^{{\text{E}}}\)), excess isentropic compressibility (\(\kappa_{{\text{S}}}^{{\text{E}}}\)) and other derived properties were determined at various experimental temperatures. Such thermophysical properties were discussed in terms of molecular interactions and structural effects well corroborated with IR spectra of the mixtures. Excess molar volumes (\(V_{{\text{m}}}^{{\text{E}}}\)) of the binary mixtures were used to derive partial molar volumes (\(\overline{V}_{{\text{m,1}}}^{{0}}\) and \(\overline{V}_{{{\text{m,}}\,{\kern 1pt} {2}}}^{{0}}\)) and excess partial molar volumes (\(\overline{V}_{{\text{m,1}}}^{{\text{0,E}}}\) and \(\overline{V}_{{\text{m,2}}}^{{\text{0,E}}}\)) at infinite dilution to reveal the volume changes of the binary mixtures. Prigogine-Flory-Paterson theory (PFP), Peng-Robinson Equation of States (PR-EOS) and Bloomfield-Dewan (BF-D) model were used to predict excess molar volumes (\(V_{{\text{m}}}^{{\text{E}}}\)) and viscosities (\(\eta\)) of the mixtures. Ultrasonic speeds (\(u\)) of the binary mixtures predicted using empirical or semi-empirical theories like free length theory, Impedance dependence relation, Ideal mixture relation, Junjie’s relation, collision factor theory and Nomoto’s relation, etc. Computational studies have also been performed to establish the degree and nature of solvent–solvent interactions theoretically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solution Chemistry
Journal of Solution Chemistry 化学-物理化学
CiteScore
2.30
自引率
0.00%
发文量
87
审稿时长
3-8 weeks
期刊介绍: Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.
期刊最新文献
Liquid–Liquid Equilibria Data and Thermodynamic Modeling of {Mesityl Oxide + Diethoxymethane + Water} Ternary System at 303.15, 313.15, 323.15 K Under 101.325 kPa Thermophysical Properties for Binary Mixtures of Cumene and Linear/Cyclic Ketones, at Several Temperatures and Atmospheric Pressure Thermophysical and Excess Properties of Binary Mixtures of Dibutyl Ether and Components of Biodiesel Modeling and Experimental Measurement of NaCl and KCl Solubility: A Laser Monitoring-Based Method Solubility and Thermodynamics of Ivermectin in Aqueous Mixtures of 1-Propanol/2-Propanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1