用于光电化学水分离的 Fe:VOPO4 改性 Mo:BiVO4 光阳极中增强的体电荷转移和界面电荷转移

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-01-20 DOI:10.1016/j.esci.2024.100242
Bing He, Yu Cao, Kaijie Lin, Mingjie Wu, Yunhai Zhu, Xun Cui, Liang Hu, Yingkui Yang, Xueqin Liu
{"title":"用于光电化学水分离的 Fe:VOPO4 改性 Mo:BiVO4 光阳极中增强的体电荷转移和界面电荷转移","authors":"Bing He, Yu Cao, Kaijie Lin, Mingjie Wu, Yunhai Zhu, Xun Cui, Liang Hu, Yingkui Yang, Xueqin Liu","doi":"10.1016/j.esci.2024.100242","DOIUrl":null,"url":null,"abstract":"<p>Bismuth vanadate (BiVO<sub>4</sub>) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO<sub>4</sub>) was grafted on molybdenum doped BiVO<sub>4</sub> (Mo:BiVO<sub>4</sub>) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO<sub>4</sub>/Mo:BVO<sub>4</sub> photoanode exhibits a remarkable photocurrent density of 6.59 mA cm<sup>−2</sup> at 1.23 V versus the reversible hydrogen electrode (V<sub>RHE</sub>) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO<sub>4</sub>. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO<sub>4</sub> promotes the interfacial charge transfer between Mo:BiVO<sub>4</sub> and Fe:VOPO<sub>4</sub> via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.</p>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"6 1","pages":""},"PeriodicalIF":42.9000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting\",\"authors\":\"Bing He, Yu Cao, Kaijie Lin, Mingjie Wu, Yunhai Zhu, Xun Cui, Liang Hu, Yingkui Yang, Xueqin Liu\",\"doi\":\"10.1016/j.esci.2024.100242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bismuth vanadate (BiVO<sub>4</sub>) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO<sub>4</sub>) was grafted on molybdenum doped BiVO<sub>4</sub> (Mo:BiVO<sub>4</sub>) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO<sub>4</sub>/Mo:BVO<sub>4</sub> photoanode exhibits a remarkable photocurrent density of 6.59 mA cm<sup>−2</sup> at 1.23 V versus the reversible hydrogen electrode (V<sub>RHE</sub>) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO<sub>4</sub>. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO<sub>4</sub> promotes the interfacial charge transfer between Mo:BiVO<sub>4</sub> and Fe:VOPO<sub>4</sub> via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.</p>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1016/j.esci.2024.100242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1016/j.esci.2024.100242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

钒酸铋(BiVO4)是一种很有前途的光电化学(PEC)水氧化光阳极材料。然而,其性能却因体积和界面电荷转移能力差而大受影响。为了解决这一问题,本文将掺杂铁的磷酸钒(Fe:VOPO4)接枝到掺杂钼的 BiVO4(Mo:BiVO4)上,以同时显著增强电荷转移和氧进化动力学。因此,在 AM 1.5G 光照下,Fe:VOPO4/Mo:BVO4 光阳极在 1.23 V 电压下与可逆氢电极 (VRHE) 相比显示出 6.59 mA cm-2 的显著光电流密度,是原始 BiVO4 光阳极的 5.5 倍以上。系统研究表明,由于掺杂了钼,小极子的跳跃活化能显著降低,从而加速了体电荷转移。更重要的是,Fe:VOPO4 的沉积通过构建 V-O-V 和 P-O 键,促进了 Mo:BiVO4 和 Fe:VOPO4 之间的界面电荷转移,此外还有利于水分离动力学。这项工作为优化电荷转移过程,尤其是光阳极与助催化剂之间的界面电荷转移过程提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced bulk and interfacial charge transfer in Fe:VOPO4 modified Mo:BiVO4 photoanodes for photoelectrochemical water splitting

Bismuth vanadate (BiVO4) is a promising photoanode material for photoelectrochemical (PEC) water oxidation. However, its performance is greatly hindered by poor bulk and interfacial charge transfer. Herein, to address this issue, iron doped vanadyl phosphate (Fe:VOPO4) was grafted on molybdenum doped BiVO4 (Mo:BiVO4) for significantly enhancing charge transfer and oxygen evolution kinetics simultaneously. Consequently, the resultant Fe:VOPO4/Mo:BVO4 photoanode exhibits a remarkable photocurrent density of 6.59 mA cm−2 at 1.23 V versus the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, over approximately 5.5 times as high as that of pristine BiVO4. Systematic studies have demonstrated that the hopping activation energy of small polarons is significantly reduced due to the Mo doping, resulting in accelerated bulk charge transfer. More importantly, the deposition of Fe:VOPO4 promotes the interfacial charge transfer between Mo:BiVO4 and Fe:VOPO4 via the construction of V−O−V and P−O bonds, in addition to facilitating water splitting kinetics. This work provides a general strategy for optimizing charge transfer process, especially at the interface between photoanodes and cocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1