Jing-Qiu Gu, Ya-Peng Feng, Ming-Ming Du, Wei Zhong, Yu-Bo Sheng, Lan Zhou
{"title":"使用不完美辅助光子源的高效无噪声单光子状态线性放大协议","authors":"Jing-Qiu Gu, Ya-Peng Feng, Ming-Ming Du, Wei Zhong, Yu-Bo Sheng, Lan Zhou","doi":"10.1088/1612-202x/ad1aaa","DOIUrl":null,"url":null,"abstract":"Noiseless linear amplification (NLA) is a crucial method to solve the photon transmission loss problem. However, most NLA protocols require an ideal auxiliary single-photon source, which is unavailable under current experimental condition. Meanwhile, their heralded amplification performance is relatively low. For enhancing the feasibility and amplification performance of the NLA, in this paper, we propose an efficient NLA protocol with a practical imperfect auxiliary single-photon source. We introduce the local-quadrature squeezing operation into the NLA protocol, which can effectively increase its amplification factor. This NLA protocol only uses some common linear-optical elements, the practical imperfect auxiliary single-photon source, <bold>and imperfect single-photon detectors</bold>, so that it is easy to implement under the existing experimental condition. It may have important applications in the future quantum information processing field.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"11 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient noiseless linear amplification protocol for single-photon state using imperfect auxiliary photon source\",\"authors\":\"Jing-Qiu Gu, Ya-Peng Feng, Ming-Ming Du, Wei Zhong, Yu-Bo Sheng, Lan Zhou\",\"doi\":\"10.1088/1612-202x/ad1aaa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noiseless linear amplification (NLA) is a crucial method to solve the photon transmission loss problem. However, most NLA protocols require an ideal auxiliary single-photon source, which is unavailable under current experimental condition. Meanwhile, their heralded amplification performance is relatively low. For enhancing the feasibility and amplification performance of the NLA, in this paper, we propose an efficient NLA protocol with a practical imperfect auxiliary single-photon source. We introduce the local-quadrature squeezing operation into the NLA protocol, which can effectively increase its amplification factor. This NLA protocol only uses some common linear-optical elements, the practical imperfect auxiliary single-photon source, <bold>and imperfect single-photon detectors</bold>, so that it is easy to implement under the existing experimental condition. It may have important applications in the future quantum information processing field.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad1aaa\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad1aaa","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Efficient noiseless linear amplification protocol for single-photon state using imperfect auxiliary photon source
Noiseless linear amplification (NLA) is a crucial method to solve the photon transmission loss problem. However, most NLA protocols require an ideal auxiliary single-photon source, which is unavailable under current experimental condition. Meanwhile, their heralded amplification performance is relatively low. For enhancing the feasibility and amplification performance of the NLA, in this paper, we propose an efficient NLA protocol with a practical imperfect auxiliary single-photon source. We introduce the local-quadrature squeezing operation into the NLA protocol, which can effectively increase its amplification factor. This NLA protocol only uses some common linear-optical elements, the practical imperfect auxiliary single-photon source, and imperfect single-photon detectors, so that it is easy to implement under the existing experimental condition. It may have important applications in the future quantum information processing field.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics