Joel Jaskari, Jaakko Sahlsten, Paula Summanen, Jukka Moilanen, Erika Lehtola, Marjo Aho, Elina Säpyskä, Kustaa Hietala, Kimmo Kaski
{"title":"DR-GPT:用于糖尿病视网膜病变患者医疗报告分析的大型语言模型","authors":"Joel Jaskari, Jaakko Sahlsten, Paula Summanen, Jukka Moilanen, Erika Lehtola, Marjo Aho, Elina Säpyskä, Kustaa Hietala, Kimmo Kaski","doi":"10.1101/2024.01.12.24301230","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient’s fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen’s kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DR-GPT: a large language model for medical report analysis of diabetic retinopathy patients\",\"authors\":\"Joel Jaskari, Jaakko Sahlsten, Paula Summanen, Jukka Moilanen, Erika Lehtola, Marjo Aho, Elina Säpyskä, Kustaa Hietala, Kimmo Kaski\",\"doi\":\"10.1101/2024.01.12.24301230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient’s fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen’s kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.\",\"PeriodicalId\":501390,\"journal\":{\"name\":\"medRxiv - Ophthalmology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.01.12.24301230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.01.12.24301230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
糖尿病视网膜病变(DR)是一种由糖尿病引起的危及视力的疾病。糖尿病视网膜病变筛查计划包括眼部检查,对患者的眼底进行拍照,并将检查结果(包括糖尿病视网膜病变的严重程度)记录在医疗报告中。然而,基于 DR 严重程度的统计分析需要结构化的标签,如果报告格式是非结构化的,则需要费力的人工标注过程。在这项工作中,我们提出了一种大语言模型 DR-GPT,用于对非结构化医疗报告中的 DR 严重程度进行分类。在一组临床医疗报告中,DR-GPT 使用截断的早期治疗糖尿病视网膜病变研究量表达到了 0.975 的二次加权 Cohen's kappa。当 DR-GPT 对未标注数据的注释与相应的眼底图像配对时,额外的数据提高了图像分类器的性能,并具有统计学意义。我们的分析表明,大语言模型可用于非结构化医疗报告数据库,对糖尿病视网膜病变进行分类,应用范围广泛。
DR-GPT: a large language model for medical report analysis of diabetic retinopathy patients
Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient’s fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen’s kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.