Yandong Li , Bo Jiang , Weilong Liu , Chenglong Li , Yunfan Zhou
{"title":"基于大数据和机器学习方法的终端区交通流预测空域态势分析","authors":"Yandong Li , Bo Jiang , Weilong Liu , Chenglong Li , Yunfan Zhou","doi":"10.1016/j.bdr.2024.100425","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time and accurate prediction of terminal area arrival traffic flow is a key issue for terminal area traffic management. In this paper, we study the advantages and disadvantages of traditional dynamics-based prediction methods and time-series based prediction methods in the first step. Taking the advantages of the two type of methods, a terminal area arrival flow prediction framework based on airspace situation is proposed. In our method, the airspace situation is used as the machine learning feature to estimate the number of arrival aircraft. In addition, also based on machine learning approach, a correction stage is added to the algorithm to improve the accuracy of the prediction. ADS-B data collected from the terminal area of Chengdu is used to study the prediction accuracy based on different machine learning algorithms in the proposed framework. Experimental results show that the proposed method can predict the air traffic flow accurately. The average absolute error is only 0.35 aircraft/15 min, the root mean square error is 0.67 aircraft/15 min, and the maximum absolute error is 2 aircraft/15 min. Compared with the AOL method, our proposed method improves the accuracy of prediction by a margin of 90 % and 60 % according to the evaluation metrics of MAE and MAXAE, respectively.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214579624000017/pdfft?md5=399453e55e15e7b2fc74c8ad5fce66dc&pid=1-s2.0-S2214579624000017-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Airspace situation analysis of terminal area traffic flow prediction based on big data and machine learning methods\",\"authors\":\"Yandong Li , Bo Jiang , Weilong Liu , Chenglong Li , Yunfan Zhou\",\"doi\":\"10.1016/j.bdr.2024.100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-time and accurate prediction of terminal area arrival traffic flow is a key issue for terminal area traffic management. In this paper, we study the advantages and disadvantages of traditional dynamics-based prediction methods and time-series based prediction methods in the first step. Taking the advantages of the two type of methods, a terminal area arrival flow prediction framework based on airspace situation is proposed. In our method, the airspace situation is used as the machine learning feature to estimate the number of arrival aircraft. In addition, also based on machine learning approach, a correction stage is added to the algorithm to improve the accuracy of the prediction. ADS-B data collected from the terminal area of Chengdu is used to study the prediction accuracy based on different machine learning algorithms in the proposed framework. Experimental results show that the proposed method can predict the air traffic flow accurately. The average absolute error is only 0.35 aircraft/15 min, the root mean square error is 0.67 aircraft/15 min, and the maximum absolute error is 2 aircraft/15 min. Compared with the AOL method, our proposed method improves the accuracy of prediction by a margin of 90 % and 60 % according to the evaluation metrics of MAE and MAXAE, respectively.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000017/pdfft?md5=399453e55e15e7b2fc74c8ad5fce66dc&pid=1-s2.0-S2214579624000017-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000017\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Airspace situation analysis of terminal area traffic flow prediction based on big data and machine learning methods
Real-time and accurate prediction of terminal area arrival traffic flow is a key issue for terminal area traffic management. In this paper, we study the advantages and disadvantages of traditional dynamics-based prediction methods and time-series based prediction methods in the first step. Taking the advantages of the two type of methods, a terminal area arrival flow prediction framework based on airspace situation is proposed. In our method, the airspace situation is used as the machine learning feature to estimate the number of arrival aircraft. In addition, also based on machine learning approach, a correction stage is added to the algorithm to improve the accuracy of the prediction. ADS-B data collected from the terminal area of Chengdu is used to study the prediction accuracy based on different machine learning algorithms in the proposed framework. Experimental results show that the proposed method can predict the air traffic flow accurately. The average absolute error is only 0.35 aircraft/15 min, the root mean square error is 0.67 aircraft/15 min, and the maximum absolute error is 2 aircraft/15 min. Compared with the AOL method, our proposed method improves the accuracy of prediction by a margin of 90 % and 60 % according to the evaluation metrics of MAE and MAXAE, respectively.