利用氯化亚铁作为活化剂制备无污染的煤矸石基催化材料,实现高效过一硫酸盐活化

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Science & Technology Pub Date : 2024-01-20 DOI:10.1007/s40789-023-00659-5
Zhiming Sun, Xinlin Wang, Shaoran Jia, Jialin Liang, Xiaotian Ning, Chunquan Li
{"title":"利用氯化亚铁作为活化剂制备无污染的煤矸石基催化材料,实现高效过一硫酸盐活化","authors":"Zhiming Sun, Xinlin Wang, Shaoran Jia, Jialin Liang, Xiaotian Ning, Chunquan Li","doi":"10.1007/s40789-023-00659-5","DOIUrl":null,"url":null,"abstract":"<p>Novel coal gangue-based persulfate catalyst (CG-FeCl<sub>2</sub>) was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate (FeCl<sub>2</sub>·4H<sub>2</sub>O). The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated. It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds. And the main gaseous products are H<sub>2</sub>O, H<sub>2</sub>, and HCl during the heating process. Besides, the ability of CG-FeCl<sub>2</sub> to activate peroxymonosulfate (PMS) for catalytic degradation of polycyclic aromatic hydrocarbons (PAHs) and phenol was deeply studied. More than 95% of naphthyl, phenanthrene and phenol were removed under optimizied conditions. In addition, <sup>1</sup>O<sub>2</sub>, <sup>·</sup>OH, and SO<sub>4</sub><sup>·−</sup> were involved in the CG-FeCl<sub>2</sub>/PMS system from the free radical scavenging experiment, where <sup>1</sup>O<sub>2</sub> played a major role during the oxidation process. Furthermore, CG-FeCl<sub>2</sub>/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments. Overall, the novel CG-FeCl<sub>2</sub> is an efficient and environmentally friendly catalyst, displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"44 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation\",\"authors\":\"Zhiming Sun, Xinlin Wang, Shaoran Jia, Jialin Liang, Xiaotian Ning, Chunquan Li\",\"doi\":\"10.1007/s40789-023-00659-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Novel coal gangue-based persulfate catalyst (CG-FeCl<sub>2</sub>) was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate (FeCl<sub>2</sub>·4H<sub>2</sub>O). The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated. It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds. And the main gaseous products are H<sub>2</sub>O, H<sub>2</sub>, and HCl during the heating process. Besides, the ability of CG-FeCl<sub>2</sub> to activate peroxymonosulfate (PMS) for catalytic degradation of polycyclic aromatic hydrocarbons (PAHs) and phenol was deeply studied. More than 95% of naphthyl, phenanthrene and phenol were removed under optimizied conditions. In addition, <sup>1</sup>O<sub>2</sub>, <sup>·</sup>OH, and SO<sub>4</sub><sup>·−</sup> were involved in the CG-FeCl<sub>2</sub>/PMS system from the free radical scavenging experiment, where <sup>1</sup>O<sub>2</sub> played a major role during the oxidation process. Furthermore, CG-FeCl<sub>2</sub>/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments. Overall, the novel CG-FeCl<sub>2</sub> is an efficient and environmentally friendly catalyst, displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00659-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00659-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

通过在氮气环境下煅烧并加入四水氯化亚铁(FeCl2-4H2O),成功合成了新型煤矸石基过硫酸盐催化剂(CG-FeCl2)。对所制备材料在加热过程中的相变和气体产物进行了深入研究。结果表明,氯化亚铁参与了相变并形成了 Si-O-Fe 键。加热过程中的主要气体产物为 H2O、H2 和 HCl。此外,还深入研究了 CG-FeCl2 活化过一硫酸盐(PMS)催化降解多环芳烃(PAHs)和苯酚的能力。在优化条件下,萘、菲和酚的去除率超过 95%。此外,从自由基清除实验来看,CG-FeCl2/PMS 系统中涉及到 1O2、-OH 和 SO4--,其中 1O2 在氧化过程中发挥了主要作用。此外,在相关的降解实验中,CG-FeCl2/PMS 体系在相对较宽的 pH 值范围和常见阴离子的存在下都表现出了卓越的稳定性。总之,新型 CG-FeCl2 是一种高效、环保的催化剂,在多环芳烃和苯酚污染废水处理领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation

Novel coal gangue-based persulfate catalyst (CG-FeCl2) was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate (FeCl2·4H2O). The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated. It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds. And the main gaseous products are H2O, H2, and HCl during the heating process. Besides, the ability of CG-FeCl2 to activate peroxymonosulfate (PMS) for catalytic degradation of polycyclic aromatic hydrocarbons (PAHs) and phenol was deeply studied. More than 95% of naphthyl, phenanthrene and phenol were removed under optimizied conditions. In addition, 1O2, ·OH, and SO4·− were involved in the CG-FeCl2/PMS system from the free radical scavenging experiment, where 1O2 played a major role during the oxidation process. Furthermore, CG-FeCl2/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments. Overall, the novel CG-FeCl2 is an efficient and environmentally friendly catalyst, displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
期刊最新文献
Coal ash resources and potential for rare earth element production in the United States Ecological environment quality assessment of coal mining cities based on GEE platform: A case study of Shuozhou, China Study on signal characteristics of burst tendency coal under different loading rates Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1