用于生物医学研究和应用的人工智能有机集成系统

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Bioengineering & Translational Medicine Pub Date : 2024-01-20 DOI:10.1002/btm2.10641
Sudhiksha Maramraju, Andrew Kowalczewski, Anirudh Kaza, Xiyuan Liu, Jathin Pranav Singaraju, Mark V. Albert, Zhen Ma, Huaxiao Yang
{"title":"用于生物医学研究和应用的人工智能有机集成系统","authors":"Sudhiksha Maramraju,&nbsp;Andrew Kowalczewski,&nbsp;Anirudh Kaza,&nbsp;Xiyuan Liu,&nbsp;Jathin Pranav Singaraju,&nbsp;Mark V. Albert,&nbsp;Zhen Ma,&nbsp;Huaxiao Yang","doi":"10.1002/btm2.10641","DOIUrl":null,"url":null,"abstract":"<p>In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 2","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10641","citationCount":"0","resultStr":"{\"title\":\"AI-organoid integrated systems for biomedical studies and applications\",\"authors\":\"Sudhiksha Maramraju,&nbsp;Andrew Kowalczewski,&nbsp;Anirudh Kaza,&nbsp;Xiyuan Liu,&nbsp;Jathin Pranav Singaraju,&nbsp;Mark V. Albert,&nbsp;Zhen Ma,&nbsp;Huaxiao Yang\",\"doi\":\"10.1002/btm2.10641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.</p>\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btm2.10641\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btm2.10641","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这篇综述中,我们探讨了人工智能(AI)在推动人类多能干细胞(hPSC)衍生的器官组织的生物医学应用方面发挥的日益重要的作用。干细胞衍生的类器官(这些微型器官复制品)已成为疾病建模、药物发现和再生医学的重要工具。然而,分析由这些器官组织生成的庞大而复杂的数据集可能效率低下且容易出错。人工智能技术为从显微镜图像、转录组学、代谢组学和蛋白质组学产生的各种数据类型中有效提取洞察力并进行预测提供了一种前景广阔的解决方案。这篇综述简要概述了类器官的表征和人工智能的基本概念,同时重点全面探讨了人工智能在基于类器官的疾病建模和药物评估中的应用。它深入探讨了人工智能在加强类器官制造质量控制、无标记类器官识别和复杂类器官结构的三维图像重建方面的未来可能性。这篇综述介绍了人工智能与类器官整合的挑战和潜在解决方案,重点是建立可靠的人工智能模型决策流程和类器官研究的标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-organoid integrated systems for biomedical studies and applications

In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
期刊最新文献
Issue Information Fecal microbiota transplantation for the treatment of intestinal and extra‐intestinal diseases: Mechanism basis, clinical application, and potential prospect ColMA‐based bioprinted 3D scaffold allowed to study tenogenic events in human tendon stem cells Facile minocycline deployment in gingiva using a dissolvable microneedle patch for the adjunctive treatment of periodontal disease Temperature‐sensitive sodium beta‐glycerophosphate/chitosan hydrogel loaded with all‐trans retinoic acid regulates Pin1 to inhibit the formation of spinal cord injury‐induced rat glial scar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1