Muskan Sharma, Parodi Alessandro, Sanith Cheriyamundath, Manu Lopus
{"title":"碳纳米管在癌症中的治疗和诊断应用:最新进展与挑战。","authors":"Muskan Sharma, Parodi Alessandro, Sanith Cheriyamundath, Manu Lopus","doi":"10.1080/1061186X.2024.2309575","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"287-299"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges.\",\"authors\":\"Muskan Sharma, Parodi Alessandro, Sanith Cheriyamundath, Manu Lopus\",\"doi\":\"10.1080/1061186X.2024.2309575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"287-299\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2309575\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2309575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
碳纳米管(CNT)是碳的管状同素异形体,由碳原子组成管状结构。碳纳米管具有高比表面积、化学稳定性和丰富的电子多芳香族结构,这有助于提高其载药能力。因此,碳纳米管在包括癌症在内的多种生物医学应用中得到了广泛的探索。通过采用智能制造策略,可以设计出专门针对癌细胞的碳纳米管。这种靶向给药方法不仅能最大限度地发挥 CNTs 的治疗功效,还能最大限度地减少潜在的副作用。碳纳米管还可用于光热疗法(PTT)和免疫疗法,光热疗法使用光敏剂产生活性氧(ROS)来杀死癌细胞。关于后者,基于 CNT 的制剂可以优先靶向肿瘤内的调节性 T 细胞。CNTS 还是高效的抗原递呈剂。凭借光声、荧光和拉曼成像功能,CNT 还是出色的诊断工具。此外,金或银纳米粒子等金属纳米粒子与碳纳米管相结合,可制成纳米生物传感器来测量生物反应。本综述将重点介绍目前有关碳纳米管治疗潜力的知识、与大规模生产碳纳米管相关的挑战、可能的副作用以及在探索其临床应用时需要考虑的重要参数。
Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges.
Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.