{"title":"揭示压力恢复能力:从墨西哥洞穴鱼对极端环境的适应中获得启示。","authors":"Ansa E. Cobham, Nicolas Rohner","doi":"10.1002/jez.b.23238","DOIUrl":null,"url":null,"abstract":"<p>Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, <i>Astyanax mexicanus</i>, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of <i>A. mexicanus</i>, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 3","pages":"178-188"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23238","citationCount":"0","resultStr":"{\"title\":\"Unraveling stress resilience: Insights from adaptations to extreme environments by Astyanax mexicanus cavefish\",\"authors\":\"Ansa E. Cobham, Nicolas Rohner\",\"doi\":\"10.1002/jez.b.23238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, <i>Astyanax mexicanus</i>, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of <i>A. mexicanus</i>, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 3\",\"pages\":\"178-188\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23238\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23238","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Unraveling stress resilience: Insights from adaptations to extreme environments by Astyanax mexicanus cavefish
Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, Astyanax mexicanus, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of A. mexicanus, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.