Kavyashree Nagappa Kummur, Malatesh S Pujar, Mahanthesh Basangouda Patil, Mahesh Madar, Ashok H Sidarai
{"title":"基于香豆素的新型荧光 TURN OFF 传感器的光谱学研究,用于选择性检测 Fe3+:体外活细胞成像应用。","authors":"Kavyashree Nagappa Kummur, Malatesh S Pujar, Mahanthesh Basangouda Patil, Mahesh Madar, Ashok H Sidarai","doi":"10.1007/s10895-023-03573-w","DOIUrl":null,"url":null,"abstract":"<p><p>The novel TURN-OFF fluorescent sensors 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) and 4-(6-Bromo-benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BBHC) are designed and synthesized for the spectrofluorometric detection of the biologically important Fe<sup>3+</sup> ions, which has sensitive and selective fluorescence quenching over other competitive metal ions. The effectiveness of the sensors and rapid response are validated through UV-Visible, and fluorescence spectral changes. These spectral changes could be due to the formation of coordination bond between ligand and metal ion. The binding stoichiometry of both sensors with Fe<sup>3+</sup> ions is studied with the help of Job's plot, which gives a 1:2 coordination ratio; this is further confirmed through DFT, IR and NMR studies. The association constants of 4BHC and 4BBHC are calculated through Benesie-Hildebrand plots, and they are found to be 6 × 10<sup>4</sup> M<sup>-1</sup> and 11.2 × 10<sup>4</sup> M<sup>-1</sup> respectively. Following, LOD is calculated to define the range of sensitivity of the proposed sensors and is found to be 3.43 μM and 2.14 μM respectively. The chemical hardness parameter suggested that both sensors are soft molecules. In addition, low cytotoxicity levels of 4BHC and 4BBHC led to the demonstration of their efficacy in In-Vitro imaging of Fe<sup>3+</sup> ions inside living cells, which ensures that these sensors are promising candidates for bioimaging.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"1045-1061"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic Investigation of Coumarin Based Novel Fluorescent TURN OFF Sensor for the Selective Detection of Fe<sup>3+</sup>: In-vitro Live Cell Imaging Application.\",\"authors\":\"Kavyashree Nagappa Kummur, Malatesh S Pujar, Mahanthesh Basangouda Patil, Mahesh Madar, Ashok H Sidarai\",\"doi\":\"10.1007/s10895-023-03573-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The novel TURN-OFF fluorescent sensors 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) and 4-(6-Bromo-benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BBHC) are designed and synthesized for the spectrofluorometric detection of the biologically important Fe<sup>3+</sup> ions, which has sensitive and selective fluorescence quenching over other competitive metal ions. The effectiveness of the sensors and rapid response are validated through UV-Visible, and fluorescence spectral changes. These spectral changes could be due to the formation of coordination bond between ligand and metal ion. The binding stoichiometry of both sensors with Fe<sup>3+</sup> ions is studied with the help of Job's plot, which gives a 1:2 coordination ratio; this is further confirmed through DFT, IR and NMR studies. The association constants of 4BHC and 4BBHC are calculated through Benesie-Hildebrand plots, and they are found to be 6 × 10<sup>4</sup> M<sup>-1</sup> and 11.2 × 10<sup>4</sup> M<sup>-1</sup> respectively. Following, LOD is calculated to define the range of sensitivity of the proposed sensors and is found to be 3.43 μM and 2.14 μM respectively. The chemical hardness parameter suggested that both sensors are soft molecules. In addition, low cytotoxicity levels of 4BHC and 4BBHC led to the demonstration of their efficacy in In-Vitro imaging of Fe<sup>3+</sup> ions inside living cells, which ensures that these sensors are promising candidates for bioimaging.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"1045-1061\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-023-03573-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03573-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spectroscopic Investigation of Coumarin Based Novel Fluorescent TURN OFF Sensor for the Selective Detection of Fe3+: In-vitro Live Cell Imaging Application.
The novel TURN-OFF fluorescent sensors 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) and 4-(6-Bromo-benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BBHC) are designed and synthesized for the spectrofluorometric detection of the biologically important Fe3+ ions, which has sensitive and selective fluorescence quenching over other competitive metal ions. The effectiveness of the sensors and rapid response are validated through UV-Visible, and fluorescence spectral changes. These spectral changes could be due to the formation of coordination bond between ligand and metal ion. The binding stoichiometry of both sensors with Fe3+ ions is studied with the help of Job's plot, which gives a 1:2 coordination ratio; this is further confirmed through DFT, IR and NMR studies. The association constants of 4BHC and 4BBHC are calculated through Benesie-Hildebrand plots, and they are found to be 6 × 104 M-1 and 11.2 × 104 M-1 respectively. Following, LOD is calculated to define the range of sensitivity of the proposed sensors and is found to be 3.43 μM and 2.14 μM respectively. The chemical hardness parameter suggested that both sensors are soft molecules. In addition, low cytotoxicity levels of 4BHC and 4BBHC led to the demonstration of their efficacy in In-Vitro imaging of Fe3+ ions inside living cells, which ensures that these sensors are promising candidates for bioimaging.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.