踢腿动作在前爬泳中的作用:游泳速度、手部推动力和躯干倾斜度之间的相互关系。

IF 2 3区 医学 Q3 ENGINEERING, BIOMEDICAL Sports Biomechanics Pub Date : 2024-01-22 DOI:10.1080/14763141.2024.2303361
Tomoya Kadi, Sohei Washino, Takaaki Tsunokawa, Kenzo Narita, Hirotoshi Mankyu, Akihiko Murai, Hiroyuki Tamaki
{"title":"踢腿动作在前爬泳中的作用:游泳速度、手部推动力和躯干倾斜度之间的相互关系。","authors":"Tomoya Kadi, Sohei Washino, Takaaki Tsunokawa, Kenzo Narita, Hirotoshi Mankyu, Akihiko Murai, Hiroyuki Tamaki","doi":"10.1080/14763141.2024.2303361","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the essential role of the kicking action in front crawl. To achieve this objective, we examined the relationships of the hand propulsive force and trunk inclination with swimming velocity over a wide range of velocities from 0.75 m·s<sup>-1</sup> to maximum effort, including the experimental conditions of arm stroke without a pull buoy. Seven male swimmers performed a 25 m front crawl at various speeds under three swimming conditions: arm stroke with a pull buoy, arm stroke without a pull buoy (AWOB) and arm stroke with a six-beat kick (SWIM). Swimming velocity, hand propulsive force and trunk inclination were calculated using an underwater motion-capture system and pressure sensors. Most notably, AWOB consistently exhibited greater values than SWIM for hand propulsive force across the range of observed velocities (<i>p</i> < 0.05) and for trunk inclination below the severe velocity (<i>p</i> < 0.05), and these differences increased with decreasing velocity. These results indicate that 1) the kicking action in front crawl has a positive effect on reducing the pressure drag acting on the trunk, thereby allowing swimmers to achieve a given velocity with less hand propulsive force, and 2) this phenomenon is significant in low-velocity ranges.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-19"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of kicking action in front crawl: the inter-relationships between swimming velocity, hand propulsive force and trunk inclination.\",\"authors\":\"Tomoya Kadi, Sohei Washino, Takaaki Tsunokawa, Kenzo Narita, Hirotoshi Mankyu, Akihiko Murai, Hiroyuki Tamaki\",\"doi\":\"10.1080/14763141.2024.2303361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the essential role of the kicking action in front crawl. To achieve this objective, we examined the relationships of the hand propulsive force and trunk inclination with swimming velocity over a wide range of velocities from 0.75 m·s<sup>-1</sup> to maximum effort, including the experimental conditions of arm stroke without a pull buoy. Seven male swimmers performed a 25 m front crawl at various speeds under three swimming conditions: arm stroke with a pull buoy, arm stroke without a pull buoy (AWOB) and arm stroke with a six-beat kick (SWIM). Swimming velocity, hand propulsive force and trunk inclination were calculated using an underwater motion-capture system and pressure sensors. Most notably, AWOB consistently exhibited greater values than SWIM for hand propulsive force across the range of observed velocities (<i>p</i> < 0.05) and for trunk inclination below the severe velocity (<i>p</i> < 0.05), and these differences increased with decreasing velocity. These results indicate that 1) the kicking action in front crawl has a positive effect on reducing the pressure drag acting on the trunk, thereby allowing swimmers to achieve a given velocity with less hand propulsive force, and 2) this phenomenon is significant in low-velocity ranges.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2303361\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2303361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨前爬泳中踢腿动作的基本作用。为了实现这一目标,我们研究了在从 0.75 m-s-1 到最大努力的广泛速度范围内,包括不使用拉力浮标的手臂划水实验条件下,手部推动力和躯干倾斜度与游泳速度的关系。七名男性游泳运动员在三种游泳条件下以不同速度进行了 25 米前爬泳:带拉浮标的手臂划水、不带拉浮标的手臂划水(AWOB)和带六拍踢腿的手臂划水(SWIM)。利用水下运动捕捉系统和压力传感器计算了游泳速度、手部推动力和躯干倾斜度。最值得注意的是,在观察到的速度范围内,AWOB 的手部推动力值始终高于 SWIM(p p p)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of kicking action in front crawl: the inter-relationships between swimming velocity, hand propulsive force and trunk inclination.

This study aimed to investigate the essential role of the kicking action in front crawl. To achieve this objective, we examined the relationships of the hand propulsive force and trunk inclination with swimming velocity over a wide range of velocities from 0.75 m·s-1 to maximum effort, including the experimental conditions of arm stroke without a pull buoy. Seven male swimmers performed a 25 m front crawl at various speeds under three swimming conditions: arm stroke with a pull buoy, arm stroke without a pull buoy (AWOB) and arm stroke with a six-beat kick (SWIM). Swimming velocity, hand propulsive force and trunk inclination were calculated using an underwater motion-capture system and pressure sensors. Most notably, AWOB consistently exhibited greater values than SWIM for hand propulsive force across the range of observed velocities (p < 0.05) and for trunk inclination below the severe velocity (p < 0.05), and these differences increased with decreasing velocity. These results indicate that 1) the kicking action in front crawl has a positive effect on reducing the pressure drag acting on the trunk, thereby allowing swimmers to achieve a given velocity with less hand propulsive force, and 2) this phenomenon is significant in low-velocity ranges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Biomechanics
Sports Biomechanics 医学-工程:生物医学
CiteScore
5.70
自引率
9.10%
发文量
135
审稿时长
>12 weeks
期刊介绍: Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic). Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly. Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.
期刊最新文献
Mean stability and between-session reliability of cycling biomechanics variables in elite pursuit cyclists. Bow stability and postural sway during aiming and shooting in elite compound archery. Assessment of shoulder joint and muscle characteristics side-asymmetry in professional padel players. Estimating sagittal knee and ankle moment during running using only inertial measurement units: a top-down inverse dynamics approach. Effects of shoe bending stiffness on the coordination variability of lower extremities in alternating jump rope skipping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1