{"title":"利用悬垂性和触感特征开发织物分类系统","authors":"Somin Lee, Yoojung Han, Changsang Yun","doi":"10.1186/s40691-023-00368-2","DOIUrl":null,"url":null,"abstract":"<div><p>When producing clothing using virtual fitting technology or purchasing textile and clothing products online, it is challenging to make judgments or communicate information about sensory characteristics, such as drapability and tactile sensations, as there are no clear objective indicators for these factors. Therefore, the study aims to develop a classification system for the sensory properties of fabrics using drapability and tactile characteristics as quantitative indicators. The developed system was verified through subjective evaluations by an expert group, and it was found to be meaningful in reflecting classification levels in practice. The drapability and tactile sensation (softness; TS7) of the fabric were classified using fuzzy c-means cluster analysis, and the results were confirmed through a subjective evaluation by experts. The classification system was then used to predict the classification group, constituted by drapability and tactile characteristics, from mechanical properties using an artificial neural network. The network was trained on 534 fabric samples for drapability and tactile sensation (softness), and it correctly predicted 202 samples out of 243 validation data, with a forecasting accuracy of 83.5%. The developed classification system enables predictions and judgments about subjective characteristics like fabric drapability and tactile sensation based on the mechanical property values of various samples.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00368-2","citationCount":"0","resultStr":"{\"title\":\"Development of a fabric classification system using drapability and tactile characteristics\",\"authors\":\"Somin Lee, Yoojung Han, Changsang Yun\",\"doi\":\"10.1186/s40691-023-00368-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When producing clothing using virtual fitting technology or purchasing textile and clothing products online, it is challenging to make judgments or communicate information about sensory characteristics, such as drapability and tactile sensations, as there are no clear objective indicators for these factors. Therefore, the study aims to develop a classification system for the sensory properties of fabrics using drapability and tactile characteristics as quantitative indicators. The developed system was verified through subjective evaluations by an expert group, and it was found to be meaningful in reflecting classification levels in practice. The drapability and tactile sensation (softness; TS7) of the fabric were classified using fuzzy c-means cluster analysis, and the results were confirmed through a subjective evaluation by experts. The classification system was then used to predict the classification group, constituted by drapability and tactile characteristics, from mechanical properties using an artificial neural network. The network was trained on 534 fabric samples for drapability and tactile sensation (softness), and it correctly predicted 202 samples out of 243 validation data, with a forecasting accuracy of 83.5%. The developed classification system enables predictions and judgments about subjective characteristics like fabric drapability and tactile sensation based on the mechanical property values of various samples.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00368-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-023-00368-2\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-023-00368-2","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Development of a fabric classification system using drapability and tactile characteristics
When producing clothing using virtual fitting technology or purchasing textile and clothing products online, it is challenging to make judgments or communicate information about sensory characteristics, such as drapability and tactile sensations, as there are no clear objective indicators for these factors. Therefore, the study aims to develop a classification system for the sensory properties of fabrics using drapability and tactile characteristics as quantitative indicators. The developed system was verified through subjective evaluations by an expert group, and it was found to be meaningful in reflecting classification levels in practice. The drapability and tactile sensation (softness; TS7) of the fabric were classified using fuzzy c-means cluster analysis, and the results were confirmed through a subjective evaluation by experts. The classification system was then used to predict the classification group, constituted by drapability and tactile characteristics, from mechanical properties using an artificial neural network. The network was trained on 534 fabric samples for drapability and tactile sensation (softness), and it correctly predicted 202 samples out of 243 validation data, with a forecasting accuracy of 83.5%. The developed classification system enables predictions and judgments about subjective characteristics like fabric drapability and tactile sensation based on the mechanical property values of various samples.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.