基于微波反射原理的市政污泥含水率快速实时检测

Yan Zhang, Yanhong Jiao, Jun Li, Long Deng, Binqi Rao, Hao Xu, Peng Xu, Lijiang Hu, Chunping Li
{"title":"基于微波反射原理的市政污泥含水率快速实时检测","authors":"Yan Zhang,&nbsp;Yanhong Jiao,&nbsp;Jun Li,&nbsp;Long Deng,&nbsp;Binqi Rao,&nbsp;Hao Xu,&nbsp;Peng Xu,&nbsp;Lijiang Hu,&nbsp;Chunping Li","doi":"10.1007/s42768-023-00179-7","DOIUrl":null,"url":null,"abstract":"<div><p>The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity (<span>\\(\\varepsilon^{\\prime}\\)</span>). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of <span>\\(\\varepsilon^{\\prime}\\)</span> is developed, and the relationship between the resonant frequency and <span>\\(\\varepsilon^{\\prime}\\)</span> is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"259 - 269"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and real-time detection of municipal sludge moisture content based on microwave reflection principle\",\"authors\":\"Yan Zhang,&nbsp;Yanhong Jiao,&nbsp;Jun Li,&nbsp;Long Deng,&nbsp;Binqi Rao,&nbsp;Hao Xu,&nbsp;Peng Xu,&nbsp;Lijiang Hu,&nbsp;Chunping Li\",\"doi\":\"10.1007/s42768-023-00179-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity (<span>\\\\(\\\\varepsilon^{\\\\prime}\\\\)</span>). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of <span>\\\\(\\\\varepsilon^{\\\\prime}\\\\)</span> is developed, and the relationship between the resonant frequency and <span>\\\\(\\\\varepsilon^{\\\\prime}\\\\)</span> is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"6 2\",\"pages\":\"259 - 269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-023-00179-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00179-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

市政污泥的含水率(MC)是影响污泥处理和处置技术的关键因素,而现有的测量方法绝大多数都是离线测量,耗时较长。为了实现污泥含水率的快速在线检测,本文提出了一种基于微波反射原理的检测方法:通过实验,利用共振频率和介电常数((\(\varepsilon^{\prime}\))推导出污泥的含水率计算模型。结果表明,厚度为 10 毫米的颗粒状污泥的检测精度更高。建立了 MC 与 \(\varepsilon^{prime}\)实部之间的理论模型,并用三次多项式表示了共振频率与 \(\varepsilon^{prime}\)之间的关系。污泥的平均误差和均方根误差(RMSE)分别为 2.06% 和 2.49%。同时给出了污泥 MC 的预测模型,其判定系数和均方根误差分别为 0.981% 和 2.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid and real-time detection of municipal sludge moisture content based on microwave reflection principle

The moisture content (MC) of municipal sludge is the key factor affecting sludge treatment and disposal technologies, while the vast majority of existing measurement methods are off-line and time-consuming. To realize rapid online detection for the MC of sludge, a detection method based on the microwave reflection principle is proposed: experiments are carried out and the MC computation model of the sludge is derived using the resonant frequency and the permittivity (\(\varepsilon^{\prime}\)). The results reveal that the detection accuracy of granular sludge with a thickness of 10 mm is higher. The theoretical model between the MC and the real part of \(\varepsilon^{\prime}\) is developed, and the relationship between the resonant frequency and \(\varepsilon^{\prime}\) is expressed by a cubic polynomial. The average error and the root mean square error (RMSE) of sludge are 2.06% and 2.49%, respectively. The prediction model for the MC of sludge is also given, and the determination coefficient and RMSE are 0.981 and 2.06%, respectively.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1