基于自适应深度融合神经网络的工业过程软传感器

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2024-01-20 DOI:10.1002/cem.3529
Xiaoping Guo, Jialin Chong, Yuan Li
{"title":"基于自适应深度融合神经网络的工业过程软传感器","authors":"Xiaoping Guo,&nbsp;Jialin Chong,&nbsp;Yuan Li","doi":"10.1002/cem.3529","DOIUrl":null,"url":null,"abstract":"<p>Deep neural networks have become an important tool for soft sensor modeling. However, common deep autoencoder networks are limited to mining the effective information of each input layer during hierarchical training, ignoring the loss of effective information in the original input data and accumulating it layer-by-layer, resulting in incomplete feature representation of the original input. At the same time, there is a lack of mining for temporal correlation between process samples and an adaptive mechanism to strengthen temporal related features, resulting in insufficient process information mining. In addition, deep neural networks generally have overfitting problems. To this end, an adaptive deep fusion neural network (ADFNN) method is proposed. This method reconstructs the original input data at each layer of the feature extraction network. By using the reconstructed original input error in pre-training loss, it reduces the loss of effective information from the original input. Simultaneously, incorporating sliding windows and self-attention mechanisms to select and calculate the contribution of historical samples to the current sample, integrating temporal related information, and overcoming dependence on high-dimensional local features by minimizing Kullback-Leibier (KL) divergence penalty terms. Finally, the temporal features are adaptively weighted and connected to a fully connected network to achieve quality prediction. Simulation experiments were conducted in cases of debutanizer and industrial polyethylene production to verify the effectiveness of the proposed method. The experimental results show that compared to the stacked autoencoder (SAE), target dependent stacked autoencoder (TSAE), and stacked isomorphic autoencoder (SIAE) models, the proposed method ADFNN has improved prediction accuracy by 2.4%, 1.7%, and 0.5% in the case of a debutanizer, respectively. In the industrial polyethylene production case, it has increased by 3.6%, 3.3%, and 1.8%, respectively.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive deep fusion neural network based soft sensor for industrial process\",\"authors\":\"Xiaoping Guo,&nbsp;Jialin Chong,&nbsp;Yuan Li\",\"doi\":\"10.1002/cem.3529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep neural networks have become an important tool for soft sensor modeling. However, common deep autoencoder networks are limited to mining the effective information of each input layer during hierarchical training, ignoring the loss of effective information in the original input data and accumulating it layer-by-layer, resulting in incomplete feature representation of the original input. At the same time, there is a lack of mining for temporal correlation between process samples and an adaptive mechanism to strengthen temporal related features, resulting in insufficient process information mining. In addition, deep neural networks generally have overfitting problems. To this end, an adaptive deep fusion neural network (ADFNN) method is proposed. This method reconstructs the original input data at each layer of the feature extraction network. By using the reconstructed original input error in pre-training loss, it reduces the loss of effective information from the original input. Simultaneously, incorporating sliding windows and self-attention mechanisms to select and calculate the contribution of historical samples to the current sample, integrating temporal related information, and overcoming dependence on high-dimensional local features by minimizing Kullback-Leibier (KL) divergence penalty terms. Finally, the temporal features are adaptively weighted and connected to a fully connected network to achieve quality prediction. Simulation experiments were conducted in cases of debutanizer and industrial polyethylene production to verify the effectiveness of the proposed method. The experimental results show that compared to the stacked autoencoder (SAE), target dependent stacked autoencoder (TSAE), and stacked isomorphic autoencoder (SIAE) models, the proposed method ADFNN has improved prediction accuracy by 2.4%, 1.7%, and 0.5% in the case of a debutanizer, respectively. In the industrial polyethylene production case, it has increased by 3.6%, 3.3%, and 1.8%, respectively.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3529\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3529","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络已成为软传感器建模的重要工具。然而,常见的深度自动编码器网络仅限于在分层训练过程中挖掘各输入层的有效信息,忽略了原始输入数据中有效信息的丢失,逐层积累,导致原始输入的特征表示不完整。同时,缺乏对过程样本间时间相关性的挖掘和强化时间相关特征的自适应机制,导致过程信息挖掘不够充分。此外,深度神经网络普遍存在过拟合问题。为此,我们提出了一种自适应深度融合神经网络(ADFNN)方法。该方法会在特征提取网络的每一层重建原始输入数据。通过在预训练损失中使用重建的原始输入误差,可以减少原始输入的有效信息损失。同时,结合滑动窗口和自我关注机制来选择和计算历史样本对当前样本的贡献,整合与时间相关的信息,并通过最小化 Kullback-Leibier (KL) 发散惩罚项来克服对高维局部特征的依赖。最后,对时间特征进行自适应加权,并将其连接到全连接网络,以实现高质量预测。为了验证所提方法的有效性,我们在脱utanizer 和工业聚乙烯生产中进行了模拟实验。实验结果表明,与堆叠式自动编码器(SAE)、目标依赖堆叠式自动编码器(TSAE)和堆叠式同构自动编码器(SIAE)模型相比,所提出的 ADFNN 方法在去氨酸装置中的预测精度分别提高了 2.4%、1.7% 和 0.5%。在工业聚乙烯生产案例中,预测准确率分别提高了 3.6%、3.3% 和 1.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive deep fusion neural network based soft sensor for industrial process

Deep neural networks have become an important tool for soft sensor modeling. However, common deep autoencoder networks are limited to mining the effective information of each input layer during hierarchical training, ignoring the loss of effective information in the original input data and accumulating it layer-by-layer, resulting in incomplete feature representation of the original input. At the same time, there is a lack of mining for temporal correlation between process samples and an adaptive mechanism to strengthen temporal related features, resulting in insufficient process information mining. In addition, deep neural networks generally have overfitting problems. To this end, an adaptive deep fusion neural network (ADFNN) method is proposed. This method reconstructs the original input data at each layer of the feature extraction network. By using the reconstructed original input error in pre-training loss, it reduces the loss of effective information from the original input. Simultaneously, incorporating sliding windows and self-attention mechanisms to select and calculate the contribution of historical samples to the current sample, integrating temporal related information, and overcoming dependence on high-dimensional local features by minimizing Kullback-Leibier (KL) divergence penalty terms. Finally, the temporal features are adaptively weighted and connected to a fully connected network to achieve quality prediction. Simulation experiments were conducted in cases of debutanizer and industrial polyethylene production to verify the effectiveness of the proposed method. The experimental results show that compared to the stacked autoencoder (SAE), target dependent stacked autoencoder (TSAE), and stacked isomorphic autoencoder (SIAE) models, the proposed method ADFNN has improved prediction accuracy by 2.4%, 1.7%, and 0.5% in the case of a debutanizer, respectively. In the industrial polyethylene production case, it has increased by 3.6%, 3.3%, and 1.8%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Issue Information Issue Information Resampling as a Robust Measure of Model Complexity in PARAFAC Models Population Power Curves in ASCA With Permutation Testing A Non‐Linear Model for Multiple Alcohol Intakes and Optimal Designs Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1