食液昆虫的义务性互利遗传共生:自然界中错综复杂的关系

IF 2.1 3区 生物学 Q3 MICROBIOLOGY Symbiosis Pub Date : 2024-01-22 DOI:10.1007/s13199-023-00965-1
{"title":"食液昆虫的义务性互利遗传共生:自然界中错综复杂的关系","authors":"","doi":"10.1007/s13199-023-00965-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Obligate endosymbionts have a significant impact on the physiology and ecology of their insect hosts and consequently have played an important role in their diversification and evolution. Auchenorrhyncha is a sap-feeding insect group that includes cicadas, spittlebugs, leafhoppers, treehoppers, and planthoppers, some of which are well-studied vectors of plant pathogens causing important diseases. Here, we review the obligate symbiotic systems in Auchenorrhyncha. First, we address the diversity of obligate endosymbionts, illustrating the complex scenario characterised by replacements, new acquisitions, and loss of endosymbionts along evolution. Then, we describe the mechanisms that allowed maintaining these long-term associations. Also, we attend to the functional interdependence between host and obligate endosymbionts and how insect hosts support and regulate them. Moreover, we discuss current research that considers the disruption of host-endosymbionts associations as a novel strategy to control these sap-feeding insects. Finally, we suggest directions for further studies regarding obligate mutualistic relationships as well as other symbiotic systems that could be helpful in increasing the knowledge of the complex interactions between Auchenorrhyncha and their associated microbes.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obligate mutualistic heritable symbiosis in sap-feeding insects: an intricate relationship in nature\",\"authors\":\"\",\"doi\":\"10.1007/s13199-023-00965-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Obligate endosymbionts have a significant impact on the physiology and ecology of their insect hosts and consequently have played an important role in their diversification and evolution. Auchenorrhyncha is a sap-feeding insect group that includes cicadas, spittlebugs, leafhoppers, treehoppers, and planthoppers, some of which are well-studied vectors of plant pathogens causing important diseases. Here, we review the obligate symbiotic systems in Auchenorrhyncha. First, we address the diversity of obligate endosymbionts, illustrating the complex scenario characterised by replacements, new acquisitions, and loss of endosymbionts along evolution. Then, we describe the mechanisms that allowed maintaining these long-term associations. Also, we attend to the functional interdependence between host and obligate endosymbionts and how insect hosts support and regulate them. Moreover, we discuss current research that considers the disruption of host-endosymbionts associations as a novel strategy to control these sap-feeding insects. Finally, we suggest directions for further studies regarding obligate mutualistic relationships as well as other symbiotic systems that could be helpful in increasing the knowledge of the complex interactions between Auchenorrhyncha and their associated microbes.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-023-00965-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-023-00965-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 Obligate endosymbionts 对昆虫宿主的生理和生态有重大影响,因此在昆虫的多样化和进化过程中发挥了重要作用。Auchenorrhyncha是一个吸食汁液的昆虫类群,包括蝉、唾液虫、叶蝉、树蝉和刨花蝇,其中一些是植物病原体的载体,可引起重要的疾病。在此,我们将回顾 Auchenorrhyncha 的强制性共生系统。首先,我们探讨了强制性内生共生体的多样性,说明了内生共生体在进化过程中的替换、新获得和丧失等复杂情况。然后,我们描述了维持这些长期联系的机制。此外,我们还关注宿主与强制性内生共生体之间的功能相互依存关系,以及昆虫宿主如何支持和调节它们。此外,我们还讨论了当前的一些研究,这些研究认为破坏宿主与内生共生体之间的联系是控制这些食液昆虫的一种新策略。最后,我们提出了进一步研究强制性互惠关系和其他共生系统的方向,这些研究可能有助于加深对Auchenorrhyncha及其相关微生物之间复杂互动关系的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obligate mutualistic heritable symbiosis in sap-feeding insects: an intricate relationship in nature

Abstract

Obligate endosymbionts have a significant impact on the physiology and ecology of their insect hosts and consequently have played an important role in their diversification and evolution. Auchenorrhyncha is a sap-feeding insect group that includes cicadas, spittlebugs, leafhoppers, treehoppers, and planthoppers, some of which are well-studied vectors of plant pathogens causing important diseases. Here, we review the obligate symbiotic systems in Auchenorrhyncha. First, we address the diversity of obligate endosymbionts, illustrating the complex scenario characterised by replacements, new acquisitions, and loss of endosymbionts along evolution. Then, we describe the mechanisms that allowed maintaining these long-term associations. Also, we attend to the functional interdependence between host and obligate endosymbionts and how insect hosts support and regulate them. Moreover, we discuss current research that considers the disruption of host-endosymbionts associations as a novel strategy to control these sap-feeding insects. Finally, we suggest directions for further studies regarding obligate mutualistic relationships as well as other symbiotic systems that could be helpful in increasing the knowledge of the complex interactions between Auchenorrhyncha and their associated microbes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symbiosis
Symbiosis 生物-微生物学
CiteScore
4.80
自引率
8.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field. Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.
期刊最新文献
Fungal community structure in bees: influence of biome and host species The monodominant species Spirotropis longifolia is mainly nodulated by strains of the genus Bradyrhizobium outside the B. japonicum and B. elkanii superclades The soil legacy produced by grass-endophyte-mycorrhizae fungi interaction increases legume establishment Are the symbiont faunas of the venomous echinoids Toxopneustes pileolus and Tripneustes gratilla (Echinoidea, Toxopneustidae) similar? Microbiome diversity and composition across development stages of the Blue Orchard Bee, Osmia lignaria (Megachilidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1