{"title":"在东莨菪碱诱导的海马损伤模型中使用伞形酮治疗三维突触模型中突触小泡的变化","authors":"Ga-Young Choi, Eunyoung Moon, Hyosung Choi, Hee-Seok Kweon","doi":"10.1186/s42649-024-00095-y","DOIUrl":null,"url":null,"abstract":"<div><p>The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes of synaptic vesicles in three-dimensional synapse models by treatment with umbelliferone in scopolamine-induced hippocampal injury model\",\"authors\":\"Ga-Young Choi, Eunyoung Moon, Hyosung Choi, Hee-Seok Kweon\",\"doi\":\"10.1186/s42649-024-00095-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.</p></div>\",\"PeriodicalId\":470,\"journal\":{\"name\":\"Applied Microscopy\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42649-024-00095-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-024-00095-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Changes of synaptic vesicles in three-dimensional synapse models by treatment with umbelliferone in scopolamine-induced hippocampal injury model
The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.
Applied MicroscopyImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍:
Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.