{"title":"火灾后热带泥炭地甲烷通量的升高与泥炭微生物群集的深度变化有关。","authors":"Aditya Bandla, Hasan Akhtar, Massimo Lupascu, Rahayu Sukmaria Sukri, Sanjay Swarup","doi":"10.1038/s41522-024-00478-9","DOIUrl":null,"url":null,"abstract":"<p><p>Fires in tropical peatlands extend to depth, transforming them from carbon sinks into methane sources and severely limit forest recovery. Peat microbiomes influence carbon transformations and forest recovery, yet our understanding of microbiome shifts post-fire is currently limited. Our previous study highlighted altered relationships between the peat surface, water table, aboveground vegetation, and methane flux after fire in a tropical peatland. Here, we link these changes to post-fire shifts in peat microbiome composition and assembly processes across depth. We report kingdom-specific and depth-dependent shifts in alpha diversity post-fire, with large differences at deeper depths. Conversely, we found shifts in microbiome composition across all depths. Compositional shifts extended to functional groups involved in methane turnover, with methanogens enriched and methanotrophs depleted at mid and deeper depths. Finally, we show that community shifts at deeper depths result from homogeneous selection associated with post-fire changes in hydrology and aboveground vegetation. Collectively, our findings provide a biological basis for previously reported methane fluxes after fire and offer new insights into depth-dependent shifts in microbiome assembly processes, which ultimately underlie ecosystem function predictability and ecosystem recovery.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elevated methane flux in a tropical peatland post-fire is linked to depth-dependent changes in peat microbiome assembly.\",\"authors\":\"Aditya Bandla, Hasan Akhtar, Massimo Lupascu, Rahayu Sukmaria Sukri, Sanjay Swarup\",\"doi\":\"10.1038/s41522-024-00478-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fires in tropical peatlands extend to depth, transforming them from carbon sinks into methane sources and severely limit forest recovery. Peat microbiomes influence carbon transformations and forest recovery, yet our understanding of microbiome shifts post-fire is currently limited. Our previous study highlighted altered relationships between the peat surface, water table, aboveground vegetation, and methane flux after fire in a tropical peatland. Here, we link these changes to post-fire shifts in peat microbiome composition and assembly processes across depth. We report kingdom-specific and depth-dependent shifts in alpha diversity post-fire, with large differences at deeper depths. Conversely, we found shifts in microbiome composition across all depths. Compositional shifts extended to functional groups involved in methane turnover, with methanogens enriched and methanotrophs depleted at mid and deeper depths. Finally, we show that community shifts at deeper depths result from homogeneous selection associated with post-fire changes in hydrology and aboveground vegetation. Collectively, our findings provide a biological basis for previously reported methane fluxes after fire and offer new insights into depth-dependent shifts in microbiome assembly processes, which ultimately underlie ecosystem function predictability and ecosystem recovery.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00478-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00478-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elevated methane flux in a tropical peatland post-fire is linked to depth-dependent changes in peat microbiome assembly.
Fires in tropical peatlands extend to depth, transforming them from carbon sinks into methane sources and severely limit forest recovery. Peat microbiomes influence carbon transformations and forest recovery, yet our understanding of microbiome shifts post-fire is currently limited. Our previous study highlighted altered relationships between the peat surface, water table, aboveground vegetation, and methane flux after fire in a tropical peatland. Here, we link these changes to post-fire shifts in peat microbiome composition and assembly processes across depth. We report kingdom-specific and depth-dependent shifts in alpha diversity post-fire, with large differences at deeper depths. Conversely, we found shifts in microbiome composition across all depths. Compositional shifts extended to functional groups involved in methane turnover, with methanogens enriched and methanotrophs depleted at mid and deeper depths. Finally, we show that community shifts at deeper depths result from homogeneous selection associated with post-fire changes in hydrology and aboveground vegetation. Collectively, our findings provide a biological basis for previously reported methane fluxes after fire and offer new insights into depth-dependent shifts in microbiome assembly processes, which ultimately underlie ecosystem function predictability and ecosystem recovery.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.