从图像推断非医疗物体体积的方法:简评

Baticté Nabitchita, N. Gonçalves, Paulo Jorge Simães Coelho, Luís Pimenta, Eftim Zdravevski, Petre Lameski, Mónica Costa, Paulo Alexandre Neves, Ivan Miguel Pires
{"title":"从图像推断非医疗物体体积的方法:简评","authors":"Baticté Nabitchita, N. Gonçalves, Paulo Jorge Simães Coelho, Luís Pimenta, Eftim Zdravevski, Petre Lameski, Mónica Costa, Paulo Alexandre Neves, Ivan Miguel Pires","doi":"10.3233/ais-230193","DOIUrl":null,"url":null,"abstract":"Nowadays, the object’s volume is essential for monitoring any scene. Technological equipment is evolving, and mobile devices and other devices embed high-resolution cameras. The high-resolution cameras open a window for different research studies, where the volume measurement is vital for different areas. This study aims to identify image processing techniques for measuring the object’s volume. Thus, a systematic review was performed with a Natural Language Processing (NLP)-based framework for identifying studies between 2010 and 2023 related to the measurement of object volume. As a result of this search, this paper reviewed and analyzed 25 studies, verifying that different computer vision methods accurately handle object recognition. Additionally, an evaluation of the databases presented by the studies above is performed to consider further the design of a new approach to infer the volume of objects from an image.","PeriodicalId":508128,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"9 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for volume inference of non-medical objects from images: A short review\",\"authors\":\"Baticté Nabitchita, N. Gonçalves, Paulo Jorge Simães Coelho, Luís Pimenta, Eftim Zdravevski, Petre Lameski, Mónica Costa, Paulo Alexandre Neves, Ivan Miguel Pires\",\"doi\":\"10.3233/ais-230193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the object’s volume is essential for monitoring any scene. Technological equipment is evolving, and mobile devices and other devices embed high-resolution cameras. The high-resolution cameras open a window for different research studies, where the volume measurement is vital for different areas. This study aims to identify image processing techniques for measuring the object’s volume. Thus, a systematic review was performed with a Natural Language Processing (NLP)-based framework for identifying studies between 2010 and 2023 related to the measurement of object volume. As a result of this search, this paper reviewed and analyzed 25 studies, verifying that different computer vision methods accurately handle object recognition. Additionally, an evaluation of the databases presented by the studies above is performed to consider further the design of a new approach to infer the volume of objects from an image.\",\"PeriodicalId\":508128,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-230193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,物体的体积对于监控任何场景都至关重要。技术设备在不断发展,移动设备和其他设备都嵌入了高分辨率摄像头。高分辨率照相机为不同领域的研究打开了一扇窗,在这些领域中,体积测量至关重要。本研究旨在确定测量物体体积的图像处理技术。因此,我们利用基于自然语言处理(NLP)的框架进行了一次系统性回顾,以确定 2010 年至 2023 年期间与物体体积测量相关的研究。经过搜索,本文对 25 项研究进行了回顾和分析,验证了不同的计算机视觉方法能够准确地识别物体。此外,本文还对上述研究提供的数据库进行了评估,以进一步考虑设计一种新方法,从图像中推断物体的体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for volume inference of non-medical objects from images: A short review
Nowadays, the object’s volume is essential for monitoring any scene. Technological equipment is evolving, and mobile devices and other devices embed high-resolution cameras. The high-resolution cameras open a window for different research studies, where the volume measurement is vital for different areas. This study aims to identify image processing techniques for measuring the object’s volume. Thus, a systematic review was performed with a Natural Language Processing (NLP)-based framework for identifying studies between 2010 and 2023 related to the measurement of object volume. As a result of this search, this paper reviewed and analyzed 25 studies, verifying that different computer vision methods accurately handle object recognition. Additionally, an evaluation of the databases presented by the studies above is performed to consider further the design of a new approach to infer the volume of objects from an image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drinking event detection on a sensing wristband using machine learning Secure storage of dynamic node information in smart parking using local blockchain GreenhouseGuard: Enabling real-time warning prediction for smart greenhouse management Forecasting energy demand and efficiency in a smart home environment through advanced ensemble model: Stacking and voting Adaptive fuzzy-based node communication performance prediction with hybrid heuristic Cluster Head selection framework in WSN using enhanced K-means clustering mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1