{"title":"范德华巡回铁磁性 Cr7Te8 中的栅极可调贝里曲率","authors":"Kui Meng, Zeya Li, Zhansheng Gao, Xiangyu Bi, Peng Chen, Feng Qin, Caiyu Qiu, Lingyun Xu, Junwei Huang, Jinxiong Wu, Feng Luo, Hongtao Yuan","doi":"10.1002/inf2.12524","DOIUrl":null,"url":null,"abstract":"<p>The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr<sub>7</sub>Te<sub>8</sub> with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr<sub>7</sub>Te<sub>8</sub> due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12524","citationCount":"0","resultStr":"{\"title\":\"Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8\",\"authors\":\"Kui Meng, Zeya Li, Zhansheng Gao, Xiangyu Bi, Peng Chen, Feng Qin, Caiyu Qiu, Lingyun Xu, Junwei Huang, Jinxiong Wu, Feng Luo, Hongtao Yuan\",\"doi\":\"10.1002/inf2.12524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr<sub>7</sub>Te<sub>8</sub> with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr<sub>7</sub>Te<sub>8</sub> due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12524\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12524\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12524","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8
The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr7Te8 with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr7Te8 due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.