超音速进气模型中振荡气流的滞后现象

Q3 Earth and Planetary Sciences Aerospace Systems Pub Date : 2024-01-13 DOI:10.1007/s42401-023-00268-9
Alexander Kuzmin
{"title":"超音速进气模型中振荡气流的滞后现象","authors":"Alexander Kuzmin","doi":"10.1007/s42401-023-00268-9","DOIUrl":null,"url":null,"abstract":"<div><p>Supersonic airflow deceleration in a conventional mixed-compression intake is studied numerically. The simulation of turbulent two-dimensional flow is based on the Reynolds-averaged Navier–Stokes equations and the <i>k</i>-ω SST turbulence model. Numerical solutions are obtained with ANSYS-18.2 CFX finite-volume solver of second-order accuracy. The solutions reveal flow hysteresis with step-by-step changes in the free-stream Mach number <i>M</i><sub>∞</sub>. The hysteresis is caused by the instability of an interaction of a shock wave with the local region of flow acceleration formed near the throat of intake. Oscillations of the Mach number <i>M</i><sub>∞</sub> in time are considered as well, and the existence of hysteresis is confirmed at small values of the amplitude <i>A</i> and period τ of the oscillations. The hysteresis shrinks with increasing amplitude <i>A</i> and eventually disappears at sufficiently large amplitudes. The dependence of shock wave oscillations on the period τ is also studied and transitions between different flow regimes are discussed.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 3","pages":"629 - 633"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hysteresis of oscillatory airflow in a supersonic intake model\",\"authors\":\"Alexander Kuzmin\",\"doi\":\"10.1007/s42401-023-00268-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supersonic airflow deceleration in a conventional mixed-compression intake is studied numerically. The simulation of turbulent two-dimensional flow is based on the Reynolds-averaged Navier–Stokes equations and the <i>k</i>-ω SST turbulence model. Numerical solutions are obtained with ANSYS-18.2 CFX finite-volume solver of second-order accuracy. The solutions reveal flow hysteresis with step-by-step changes in the free-stream Mach number <i>M</i><sub>∞</sub>. The hysteresis is caused by the instability of an interaction of a shock wave with the local region of flow acceleration formed near the throat of intake. Oscillations of the Mach number <i>M</i><sub>∞</sub> in time are considered as well, and the existence of hysteresis is confirmed at small values of the amplitude <i>A</i> and period τ of the oscillations. The hysteresis shrinks with increasing amplitude <i>A</i> and eventually disappears at sufficiently large amplitudes. The dependence of shock wave oscillations on the period τ is also studied and transitions between different flow regimes are discussed.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 3\",\"pages\":\"629 - 633\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00268-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00268-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

对传统混合压缩进气口中的超音速气流减速进行了数值研究。二维湍流模拟基于雷诺平均纳维-斯托克斯方程和 k-ω SST 湍流模型。数值求解采用二阶精度的 ANSYS-18.2 CFX 有限体积求解器。求解结果表明,随着自由流马赫数 M∞ 的逐步变化,会出现流动滞后现象。滞后是由于冲击波与进气口喉部附近形成的局部流动加速区域相互作用的不稳定性造成的。马赫数 M∞ 在时间上的振荡也被考虑在内,在振荡的振幅 A 和周期 τ 值较小时,滞后的存在被证实。滞后随着振幅 A 的增大而减小,最终在振幅足够大时消失。此外,还研究了冲击波振荡对周期 τ 的依赖性,并讨论了不同流动状态之间的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hysteresis of oscillatory airflow in a supersonic intake model

Supersonic airflow deceleration in a conventional mixed-compression intake is studied numerically. The simulation of turbulent two-dimensional flow is based on the Reynolds-averaged Navier–Stokes equations and the k-ω SST turbulence model. Numerical solutions are obtained with ANSYS-18.2 CFX finite-volume solver of second-order accuracy. The solutions reveal flow hysteresis with step-by-step changes in the free-stream Mach number M. The hysteresis is caused by the instability of an interaction of a shock wave with the local region of flow acceleration formed near the throat of intake. Oscillations of the Mach number M in time are considered as well, and the existence of hysteresis is confirmed at small values of the amplitude A and period τ of the oscillations. The hysteresis shrinks with increasing amplitude A and eventually disappears at sufficiently large amplitudes. The dependence of shock wave oscillations on the period τ is also studied and transitions between different flow regimes are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
期刊最新文献
Efficient machine learning based techniques for fault detection and identification in spacecraft reaction wheel Research on altitude adjustment performance of stratospheric airship based on thermodynamic-dynamic-pressure coupled Contemporary architecture of the satellite Global Ship Tracking (GST) systems, networks and equipment Research on real-time trajectory optimization methods for stratospheric airships based on deep learning Liquid propellant sloshing characteristics and suppression in new-generation space vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1