{"title":"生物地球化学和微生物群落结构对两个相邻火山湖(意大利蒙蒂奇奥)中二氧化碳和甲烷动态的不同调节作用","authors":"Stefano Fazi , Jacopo Cabassi , Francesco Capecchiacci , Cristiana Callieri , Ester M Eckert , Stefano Amalfitano , Luca Pasquini , Roberto Bertoni , Orlando Vaselli , Franco Tassi , Bertram Boehrer , Giovannella Pecoraino , Lorenza Li Vigni , Sergio Calabrese , Monia Procesi , Michele Paternoster","doi":"10.1016/j.ecohyd.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>By hosting significant amounts of extra-atmospheric dissolved gases, including geogenic CO<sub>2</sub> and CH<sub>4</sub><span>, volcanic lakes provide relevant ecosystem services through the key role the aquatic microbial community<span><span><span> in mediating freshwater carbon fluxes. In view of elucidating the mechanisms governing the microbial spatial distribution and the possible implications for ecosystem functioning, we compared the hydrogeochemical features and the </span>microbial community structure of two adjacent stratified volcanic lakes (Lake Grande - LG and Lake Piccolo - LP). </span>Water chemistry<span>, gases and their isotopic composition<span> were coupled with microbial pigment profiling, cell counting, and phylogenetic analyses. LP showed transparent waters with low concentrations of chlorophyll-</span></span></span></span><em>a</em> and the occurrence of phycoerytrin-rich cyanobacteria. LG was relatively more eutrophic with a higher occurrence of diatoms and phycocyanine-rich cyanobacteria. Considering the higher concentrations of CO<sub>2</sub> and CH<sub>4</sub> in bottom waters, the oligotrophic LP was likely a more efficient sink of geogenic CO<sub>2</sub><span><span> in comparison to the adjacent eutrophic LG. The prokaryotic community was dominated by the mixothrophic hgcI clade (family Sporichthyaceae) in the LG surface waters, while in LP this taxon was dominant down to -15 m. Moreover, in LP, the bottom dark waters harbored a unique strictly anaerobic bacterial assemblage associated with methanogenic </span>Archaea<span> (i.e. Methanomicrobiales), resulting in a high biogenic methane concentration. Water layering and light penetration were confirmed as major factors affecting the microbial distribution patterns. The observed differences in the geochemical and trophic conditions reflected the structure of the aquatic microbial community, with direct consequences on the dynamics of dissolved greenhouse gases.</span></span></div></div>","PeriodicalId":56070,"journal":{"name":"Ecohydrology & Hydrobiology","volume":"25 1","pages":"Pages 42-53"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogeochemical and microbial community structure differently modulates CO2 and CH4 dynamics in two adjacent volcanic lakes (Monticchio, Italy)\",\"authors\":\"Stefano Fazi , Jacopo Cabassi , Francesco Capecchiacci , Cristiana Callieri , Ester M Eckert , Stefano Amalfitano , Luca Pasquini , Roberto Bertoni , Orlando Vaselli , Franco Tassi , Bertram Boehrer , Giovannella Pecoraino , Lorenza Li Vigni , Sergio Calabrese , Monia Procesi , Michele Paternoster\",\"doi\":\"10.1016/j.ecohyd.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By hosting significant amounts of extra-atmospheric dissolved gases, including geogenic CO<sub>2</sub> and CH<sub>4</sub><span>, volcanic lakes provide relevant ecosystem services through the key role the aquatic microbial community<span><span><span> in mediating freshwater carbon fluxes. In view of elucidating the mechanisms governing the microbial spatial distribution and the possible implications for ecosystem functioning, we compared the hydrogeochemical features and the </span>microbial community structure of two adjacent stratified volcanic lakes (Lake Grande - LG and Lake Piccolo - LP). </span>Water chemistry<span>, gases and their isotopic composition<span> were coupled with microbial pigment profiling, cell counting, and phylogenetic analyses. LP showed transparent waters with low concentrations of chlorophyll-</span></span></span></span><em>a</em> and the occurrence of phycoerytrin-rich cyanobacteria. LG was relatively more eutrophic with a higher occurrence of diatoms and phycocyanine-rich cyanobacteria. Considering the higher concentrations of CO<sub>2</sub> and CH<sub>4</sub> in bottom waters, the oligotrophic LP was likely a more efficient sink of geogenic CO<sub>2</sub><span><span> in comparison to the adjacent eutrophic LG. The prokaryotic community was dominated by the mixothrophic hgcI clade (family Sporichthyaceae) in the LG surface waters, while in LP this taxon was dominant down to -15 m. Moreover, in LP, the bottom dark waters harbored a unique strictly anaerobic bacterial assemblage associated with methanogenic </span>Archaea<span> (i.e. Methanomicrobiales), resulting in a high biogenic methane concentration. Water layering and light penetration were confirmed as major factors affecting the microbial distribution patterns. The observed differences in the geochemical and trophic conditions reflected the structure of the aquatic microbial community, with direct consequences on the dynamics of dissolved greenhouse gases.</span></span></div></div>\",\"PeriodicalId\":56070,\"journal\":{\"name\":\"Ecohydrology & Hydrobiology\",\"volume\":\"25 1\",\"pages\":\"Pages 42-53\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology & Hydrobiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642359323001465\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology & Hydrobiology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642359323001465","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Biogeochemical and microbial community structure differently modulates CO2 and CH4 dynamics in two adjacent volcanic lakes (Monticchio, Italy)
By hosting significant amounts of extra-atmospheric dissolved gases, including geogenic CO2 and CH4, volcanic lakes provide relevant ecosystem services through the key role the aquatic microbial community in mediating freshwater carbon fluxes. In view of elucidating the mechanisms governing the microbial spatial distribution and the possible implications for ecosystem functioning, we compared the hydrogeochemical features and the microbial community structure of two adjacent stratified volcanic lakes (Lake Grande - LG and Lake Piccolo - LP). Water chemistry, gases and their isotopic composition were coupled with microbial pigment profiling, cell counting, and phylogenetic analyses. LP showed transparent waters with low concentrations of chlorophyll-a and the occurrence of phycoerytrin-rich cyanobacteria. LG was relatively more eutrophic with a higher occurrence of diatoms and phycocyanine-rich cyanobacteria. Considering the higher concentrations of CO2 and CH4 in bottom waters, the oligotrophic LP was likely a more efficient sink of geogenic CO2 in comparison to the adjacent eutrophic LG. The prokaryotic community was dominated by the mixothrophic hgcI clade (family Sporichthyaceae) in the LG surface waters, while in LP this taxon was dominant down to -15 m. Moreover, in LP, the bottom dark waters harbored a unique strictly anaerobic bacterial assemblage associated with methanogenic Archaea (i.e. Methanomicrobiales), resulting in a high biogenic methane concentration. Water layering and light penetration were confirmed as major factors affecting the microbial distribution patterns. The observed differences in the geochemical and trophic conditions reflected the structure of the aquatic microbial community, with direct consequences on the dynamics of dissolved greenhouse gases.
期刊介绍:
Ecohydrology & Hydrobiology is an international journal that aims to advance ecohydrology as the study of the interplay between ecological and hydrological processes from molecular to river basin scales, and to promote its implementation as an integrative management tool to harmonize societal needs with biosphere potential.