{"title":"气体递质不能阻止缺氧后复氧引起的经上皮离子转运的变化。","authors":"Rebecca Claßen, Martin Diener, Ervice Pouokam","doi":"10.1515/jbcpp-2023-0034","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>How gaseous signalling molecules affect ion transport processes contributing to the physiological functions of the gastrointestinal tract under hypoxic conditions still needs to be clarified. The objective of the present study was to characterize the impact of gaseous signalling molecules on parameters of colonic ion transport during a hypoxia/reoxygenation cycle and the remaining secretory capacity of the epithelium after such a cycle.</p><p><strong>Methods: </strong>Short-circuit current (I<sub>sc</sub>) and tissue conductance (G<sub>t</sub>) recordings in Ussing chamber experiments were performed on rat colon samples using CORM-2 (putative CO donor; 35 and 350 µM), sodium nitroprusside (NO donor; 100 µM), NaHS (fast H<sub>2</sub>S donor; 10 - 1,000 µM), GYY 4137 (slow H<sub>2</sub>S donor; 50 µM) and Angeli's salt (HNO donor; 100 µM) as donors for gasotransmitters. Inhibition of endogenous synthesis of H<sub>2</sub>S was operated by inhibitors of cystathionin-γ-lyase, i.e. dl-propargylglycine (1 mM) or β-cyano-l-alanine (5 mM), and the inhibitor of cystathionine-β-synthase, amino-oxyacetate (5 mM).</p><p><strong>Results: </strong>The fast gasotransmitter donors NaHS, sodium nitroprusside and Angeli's salt, administered 5 min before the onset of hypoxia, induced an increase in I<sub>sc</sub>. The response to the subsequently applied hypoxia was characterized by a decrease in I<sub>sc</sub>, which tended to be reduced only in the presence of the lowest concentration of NaHS (10 µM) tested. Reoxygenation resulted in a slow increase in I<sub>sc</sub>, which was unaffected by all donors or inhibitors tested. The stable acetylcholine derivative carbachol (50 µM) was administered at the end of each hypoxia/reoxygenation cycle to test the secretory capacity of the epithelium. Pretreatment of the tissue with the putative CO donor CORM-2 suppressed the secretory response induced by carbachol. The same was observed when cystathionin-γ-lyase and cystathionin-γ-synthase were inhibited simultaneously. Under both conditions, G<sub>t</sub> drastically increased suggesting an impaired tissue integrity.</p><p><strong>Conclusions: </strong>The present results demonstrate that none of the exogenous gasotransmitter releasing drugs significantly ameliorated the changes in epithelial ion transport during the hypoxia/reoxygenation cycle ex vivo. In contrast, the putative CO donor CORM-2 exerted a toxic effect on the epithelium. The endogenous production of H<sub>2</sub>S, however, seems to have a protective effect on the mucosal integrity and the epithelial transport functions, which - when inhibited - leads to a loss of the secretory ability of the mucosa. This observation together with the trend for improvement observed with a low concentration of the H<sub>2</sub>S donor NaHS suggests a moderate protective role of low concentrations of H<sub>2</sub>S under hypoxic conditions.</p>","PeriodicalId":15352,"journal":{"name":"Journal of Basic and Clinical Physiology and Pharmacology","volume":" ","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gasotransmitters do not prevent changes in transepithelial ion transport induced by hypoxia followed by reoxygenation.\",\"authors\":\"Rebecca Claßen, Martin Diener, Ervice Pouokam\",\"doi\":\"10.1515/jbcpp-2023-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>How gaseous signalling molecules affect ion transport processes contributing to the physiological functions of the gastrointestinal tract under hypoxic conditions still needs to be clarified. The objective of the present study was to characterize the impact of gaseous signalling molecules on parameters of colonic ion transport during a hypoxia/reoxygenation cycle and the remaining secretory capacity of the epithelium after such a cycle.</p><p><strong>Methods: </strong>Short-circuit current (I<sub>sc</sub>) and tissue conductance (G<sub>t</sub>) recordings in Ussing chamber experiments were performed on rat colon samples using CORM-2 (putative CO donor; 35 and 350 µM), sodium nitroprusside (NO donor; 100 µM), NaHS (fast H<sub>2</sub>S donor; 10 - 1,000 µM), GYY 4137 (slow H<sub>2</sub>S donor; 50 µM) and Angeli's salt (HNO donor; 100 µM) as donors for gasotransmitters. Inhibition of endogenous synthesis of H<sub>2</sub>S was operated by inhibitors of cystathionin-γ-lyase, i.e. dl-propargylglycine (1 mM) or β-cyano-l-alanine (5 mM), and the inhibitor of cystathionine-β-synthase, amino-oxyacetate (5 mM).</p><p><strong>Results: </strong>The fast gasotransmitter donors NaHS, sodium nitroprusside and Angeli's salt, administered 5 min before the onset of hypoxia, induced an increase in I<sub>sc</sub>. The response to the subsequently applied hypoxia was characterized by a decrease in I<sub>sc</sub>, which tended to be reduced only in the presence of the lowest concentration of NaHS (10 µM) tested. Reoxygenation resulted in a slow increase in I<sub>sc</sub>, which was unaffected by all donors or inhibitors tested. The stable acetylcholine derivative carbachol (50 µM) was administered at the end of each hypoxia/reoxygenation cycle to test the secretory capacity of the epithelium. Pretreatment of the tissue with the putative CO donor CORM-2 suppressed the secretory response induced by carbachol. The same was observed when cystathionin-γ-lyase and cystathionin-γ-synthase were inhibited simultaneously. Under both conditions, G<sub>t</sub> drastically increased suggesting an impaired tissue integrity.</p><p><strong>Conclusions: </strong>The present results demonstrate that none of the exogenous gasotransmitter releasing drugs significantly ameliorated the changes in epithelial ion transport during the hypoxia/reoxygenation cycle ex vivo. In contrast, the putative CO donor CORM-2 exerted a toxic effect on the epithelium. The endogenous production of H<sub>2</sub>S, however, seems to have a protective effect on the mucosal integrity and the epithelial transport functions, which - when inhibited - leads to a loss of the secretory ability of the mucosa. This observation together with the trend for improvement observed with a low concentration of the H<sub>2</sub>S donor NaHS suggests a moderate protective role of low concentrations of H<sub>2</sub>S under hypoxic conditions.</p>\",\"PeriodicalId\":15352,\"journal\":{\"name\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"volume\":\" \",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jbcpp-2023-0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Clinical Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbcpp-2023-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Gasotransmitters do not prevent changes in transepithelial ion transport induced by hypoxia followed by reoxygenation.
Objectives: How gaseous signalling molecules affect ion transport processes contributing to the physiological functions of the gastrointestinal tract under hypoxic conditions still needs to be clarified. The objective of the present study was to characterize the impact of gaseous signalling molecules on parameters of colonic ion transport during a hypoxia/reoxygenation cycle and the remaining secretory capacity of the epithelium after such a cycle.
Methods: Short-circuit current (Isc) and tissue conductance (Gt) recordings in Ussing chamber experiments were performed on rat colon samples using CORM-2 (putative CO donor; 35 and 350 µM), sodium nitroprusside (NO donor; 100 µM), NaHS (fast H2S donor; 10 - 1,000 µM), GYY 4137 (slow H2S donor; 50 µM) and Angeli's salt (HNO donor; 100 µM) as donors for gasotransmitters. Inhibition of endogenous synthesis of H2S was operated by inhibitors of cystathionin-γ-lyase, i.e. dl-propargylglycine (1 mM) or β-cyano-l-alanine (5 mM), and the inhibitor of cystathionine-β-synthase, amino-oxyacetate (5 mM).
Results: The fast gasotransmitter donors NaHS, sodium nitroprusside and Angeli's salt, administered 5 min before the onset of hypoxia, induced an increase in Isc. The response to the subsequently applied hypoxia was characterized by a decrease in Isc, which tended to be reduced only in the presence of the lowest concentration of NaHS (10 µM) tested. Reoxygenation resulted in a slow increase in Isc, which was unaffected by all donors or inhibitors tested. The stable acetylcholine derivative carbachol (50 µM) was administered at the end of each hypoxia/reoxygenation cycle to test the secretory capacity of the epithelium. Pretreatment of the tissue with the putative CO donor CORM-2 suppressed the secretory response induced by carbachol. The same was observed when cystathionin-γ-lyase and cystathionin-γ-synthase were inhibited simultaneously. Under both conditions, Gt drastically increased suggesting an impaired tissue integrity.
Conclusions: The present results demonstrate that none of the exogenous gasotransmitter releasing drugs significantly ameliorated the changes in epithelial ion transport during the hypoxia/reoxygenation cycle ex vivo. In contrast, the putative CO donor CORM-2 exerted a toxic effect on the epithelium. The endogenous production of H2S, however, seems to have a protective effect on the mucosal integrity and the epithelial transport functions, which - when inhibited - leads to a loss of the secretory ability of the mucosa. This observation together with the trend for improvement observed with a low concentration of the H2S donor NaHS suggests a moderate protective role of low concentrations of H2S under hypoxic conditions.
期刊介绍:
The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including brain research; cardiovascular-pulmonary interactions; exercise; thermal control; haematology; immune response; inflammation; metabolism; oxidative stress; and phytotherapy. As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes. Topics: Behavior and Neuroprotection, Reproduction, Genotoxicity and Cytotoxicity, Vascular Conditions, Cardiovascular Function, Cardiovascular-Pulmonary Interactions, Oxidative Stress, Metabolism, Immune Response, Hematological Profile, Inflammation, Infection, Phytotherapy.