{"title":"将先验数据纳入量化效益-风险评估:贝叶斯方法案例研究。","authors":"Sai Dharmarajan, Zhong Yuan, Yeh-Fong Chen, Leila Lackey, Saurabh Mukhopadhyay, Pritibha Singh, Ram Tiwari","doi":"10.1007/s43441-023-00611-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiple criteria decision analysis (MCDA) and stochastic multi-criteria acceptability analysis (SMAA) in their current implementation cannot incorporate prior or external information on benefits and risks. We demonstrate how to incorporate prior data using a Bayesian mixture model approach while conducting quantitative benefit-risk assessments (qBRA) for medical products.</p><p><strong>Methods: </strong>We implemented MCDA and SMAA in a Bayesian framework. To incorporate information from a prior study, we use mixture priors on each benefit and risk attribute that mixes information from a previous study with a vague prior distribution. The degree of borrowing is varied using a mixing proportion parameter.</p><p><strong>Results: </strong>A demonstration case study for qBRA using the supplementary New Drug Application (sNDA) filing for Rivaroxaban for the indication of reduction in the risk of major thrombotic vascular events in patients with peripheral artery disease (PAD) was used to illustrate the method. Net utility scores, obtained from the randomized controlled trial data to support the sNDA, from the MCDA for Rivaraxoban and comparator were 0.48 and 0.56, respectively, with Rivaroxaban being the preferred alternative only 33% of the time. We show that with only 30% borrowing from a previous RCT, the MCDA and SMAA results are favorable for Rivaroxaban, accounting for the seemingly aberrant results on all-cause death in the trial data used to support the sNDA.</p><p><strong>Conclusion: </strong>Our method to formally incorporate prior data in MCDA and SMAA is easy to use and interpret. Software in the form of an RShiny App is available here: https://sai-dharmarajan.shinyapps.io/BayesianMCDA_SMAA/ .</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":" ","pages":"415-422"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Prior Data in Quantitative Benefit-Risk Assessments: Case Study of a Bayesian Method.\",\"authors\":\"Sai Dharmarajan, Zhong Yuan, Yeh-Fong Chen, Leila Lackey, Saurabh Mukhopadhyay, Pritibha Singh, Ram Tiwari\",\"doi\":\"10.1007/s43441-023-00611-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiple criteria decision analysis (MCDA) and stochastic multi-criteria acceptability analysis (SMAA) in their current implementation cannot incorporate prior or external information on benefits and risks. We demonstrate how to incorporate prior data using a Bayesian mixture model approach while conducting quantitative benefit-risk assessments (qBRA) for medical products.</p><p><strong>Methods: </strong>We implemented MCDA and SMAA in a Bayesian framework. To incorporate information from a prior study, we use mixture priors on each benefit and risk attribute that mixes information from a previous study with a vague prior distribution. The degree of borrowing is varied using a mixing proportion parameter.</p><p><strong>Results: </strong>A demonstration case study for qBRA using the supplementary New Drug Application (sNDA) filing for Rivaroxaban for the indication of reduction in the risk of major thrombotic vascular events in patients with peripheral artery disease (PAD) was used to illustrate the method. Net utility scores, obtained from the randomized controlled trial data to support the sNDA, from the MCDA for Rivaraxoban and comparator were 0.48 and 0.56, respectively, with Rivaroxaban being the preferred alternative only 33% of the time. We show that with only 30% borrowing from a previous RCT, the MCDA and SMAA results are favorable for Rivaroxaban, accounting for the seemingly aberrant results on all-cause death in the trial data used to support the sNDA.</p><p><strong>Conclusion: </strong>Our method to formally incorporate prior data in MCDA and SMAA is easy to use and interpret. Software in the form of an RShiny App is available here: https://sai-dharmarajan.shinyapps.io/BayesianMCDA_SMAA/ .</p>\",\"PeriodicalId\":23084,\"journal\":{\"name\":\"Therapeutic innovation & regulatory science\",\"volume\":\" \",\"pages\":\"415-422\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic innovation & regulatory science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43441-023-00611-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-023-00611-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Incorporating Prior Data in Quantitative Benefit-Risk Assessments: Case Study of a Bayesian Method.
Background: Multiple criteria decision analysis (MCDA) and stochastic multi-criteria acceptability analysis (SMAA) in their current implementation cannot incorporate prior or external information on benefits and risks. We demonstrate how to incorporate prior data using a Bayesian mixture model approach while conducting quantitative benefit-risk assessments (qBRA) for medical products.
Methods: We implemented MCDA and SMAA in a Bayesian framework. To incorporate information from a prior study, we use mixture priors on each benefit and risk attribute that mixes information from a previous study with a vague prior distribution. The degree of borrowing is varied using a mixing proportion parameter.
Results: A demonstration case study for qBRA using the supplementary New Drug Application (sNDA) filing for Rivaroxaban for the indication of reduction in the risk of major thrombotic vascular events in patients with peripheral artery disease (PAD) was used to illustrate the method. Net utility scores, obtained from the randomized controlled trial data to support the sNDA, from the MCDA for Rivaraxoban and comparator were 0.48 and 0.56, respectively, with Rivaroxaban being the preferred alternative only 33% of the time. We show that with only 30% borrowing from a previous RCT, the MCDA and SMAA results are favorable for Rivaroxaban, accounting for the seemingly aberrant results on all-cause death in the trial data used to support the sNDA.
Conclusion: Our method to formally incorporate prior data in MCDA and SMAA is easy to use and interpret. Software in the form of an RShiny App is available here: https://sai-dharmarajan.shinyapps.io/BayesianMCDA_SMAA/ .
期刊介绍:
Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health.
The focus areas of the journal are as follows:
Biostatistics
Clinical Trials
Product Development and Innovation
Global Perspectives
Policy
Regulatory Science
Product Safety
Special Populations